Download presentation
1
Neutrinos – Ghost Particles of the Universe
Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany
2
Periodic System of Elementary Particles
Quarks Leptons Charge /3 Down Charge Electron Charge e-Neutrino ne e d Charge /3 Up u Down Strange Bottom Electron Muon Tau e-Neutrino m-Neutrino t-Neutrino nt nm ne e m t d s b 1st Family 2nd Family 3rd Family Up Charm Top u c Neutron Proton Strong Interaction (8 Gluons) Electromagnetic Interaction (Photon) Weak Interaction (W and Z Bosons) Gravitation (Gravitons?) Higgs
3
Where do Neutrinos Appear in Nature?
Nuclear Reactors Sun Particle Accelerators Supernovae (Stellar Collapse) SN 1987A Earth Atmosphere (Cosmic Rays) Astrophysical Accelerators Earth Crust (Natural Radioactivity) Cosmic Big Bang (Today 330 n/cm3) Indirect Evidence
4
Neutrinos from the Sun Solar radiation: 98 % light (photons)
Reaction- chains Energy 26.7 MeV Helium Solar radiation: 98 % light (photons) 2 % neutrinos At Earth 66 billion neutrinos/cm2 sec Hans Bethe ( , Nobel prize 1967) Thermonuclear reaction chains (1938)
5
Sun Glasses for Neutrinos?
8.3 light minutes Several light years of lead needed to shield solar neutrinos Bethe & Peierls 1934: … this evidently means that one will never be able to observe a neutrino.
6
First Detection (1954 – 1956) n g Cd p g g 𝝂 𝐞 e + e − Clyde Cowan
(1919 – 1974) Fred Reines (1918 – 1998) Nobel prize 1995 Detector prototype Anti-Electron Neutrinos from Hanford Nuclear Reactor 3 Gammas in coincidence n Cd g 𝝂 𝐞 p g g e + e −
7
First Measurement of Solar Neutrinos
Inverse beta decay of chlorine 600 tons of Perchloroethylene Homestake solar neutrino observatory (1967–2002)
8
2002 Physics Nobel Prize for Neutrino Astronomy
Ray Davis Jr. (1914–2006) Masatoshi Koshiba (*1926) “for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos”
9
Elastic scattering or CC reaction
Cherenkov Effect Cherenkov Ring Elastic scattering or CC reaction Light Electron or Muon (Charged Particle) Neutrino Water
10
Super-Kamiokande Neutrino Detector (Since 1996)
11
Super-Kamiokande: Sun in the Light of Neutrinos
ca. 60,000 solar neutrinos measured in Super-K (1996–2012)
12
Results of Chlorine Experiment (Homestake)
ApJ 496:505, 1998 Theoretical Expectation Average Rate Average ( ) 0.16stat 0.16sys SNU (SNU = Solar Neutrino Unit = 1 Absorption / sec / 1036 Atoms) Theoretical Prediction 6-9 SNU “Solar Neutrino Problem” since 1968
13
Neutrino Flavor Oscillations
Two-flavor mixing 𝜈 𝑒 𝜈 𝜇 = cos 𝜃 sin 𝜃 −sin 𝜃 cos 𝜃 𝜈 1 𝜈 2 Each mass eigenstate propagates as 𝑒 i𝑝𝑧 with 𝑝= 𝐸 2 − 𝑚 2 ≈𝐸− 𝑚 2 2𝐸 Phase difference 𝛿 𝑚 2 2𝐸 𝑧 implies flavor oscillations Probability 𝜈 𝑒 → 𝜈 𝜇 sin2(2𝜃) Bruno Pontecorvo (1913–1993) Invented nu oscillations z Oscillation Length 4𝜋𝐸 𝛿 𝑚 2 =2.5 m 𝐸 MeV eV 𝛿𝑚 2
14
Oscillation of Reactor Neutrinos at KamLAND (Japan)
Oscillation pattern for anti-electron neutrinos from Japanese power reactors as a function of L/E KamLAND Scintillator detector (1000 t)
15
Atmospheric Neutrino Oscillations (1998)
Atmospheric neutrino oscillations show characteristic L/E variation
16
Long-Baseline (LBL) Experiments
K2K Experiment (KEK to Kamiokande) measures precise neutrino oscillation parameters. Since then other LBL Experiments: Minos (US) Opera (Europe) T2K (Japan) Nova (US) (construction)
17
Q13 from Reactor Experiments (2012)
4MeV ͞e sin22θ13 = ± (stat) ± (syst) Daya Bay (China) 0.113 ± (stat) ± (syst) Reno (Korea) 0.086 ± (stat) ± (syst) Double Chooz (Europe)
18
Three-Flavor Neutrino Parameters
Three mixing angles 𝜃 12 , 𝜃 13 , 𝜃 23 (Euler angles for 3D rotation), 𝑐 𝑖𝑗 = cos 𝜃 𝑖𝑗 , a CP-violating “Dirac phase” 𝛿, and two “Majorana phases” 𝛼 2 and 𝛼 3 𝜈 𝑒 𝜈 𝜇 𝜈 𝜏 = 𝑐 23 𝑠 − 𝑠 23 𝑐 𝑐 𝑒 −𝑖𝛿 𝑠 −𝑒 𝑖𝛿 𝑠 𝑐 𝑐 12 𝑠 − 𝑠 12 𝑐 𝑒 𝑖 𝛼 𝑒 𝑖 𝛼 𝜈 1 𝜈 2 𝜈 3 39 ∘ < 𝜃 23 < 53 ∘ 7 ∘ <𝜃 13 < 11 ∘ 33 ∘ < 𝜃 12 < 37 ∘ Relevant for 0n2b decay Atmospheric/LBL-Beams Reactor Solar/KamLAND Normal Inverted Tasks and Open Questions Precision for all angles CP-violating phase d ? Mass ordering ? (normal vs inverted) Absolute masses ? (hierarchical vs degenerate) Dirac or Majorana ? Δ 𝑚 2 72–80 meV2 3 m t 2 m e t Atmosphere Sun 1 m e t Atmosphere 2180–2640 meV2 2 m e t Sun 1 m e t 3 m t
19
Antineutrino Oscillations Different from Neutrinos?
𝝂 𝐞 = 𝑐 12 𝑐 𝝂 𝟏 + 𝑠 12 𝑐 𝝂 𝟐 + 𝑠 13 𝑒 −𝑖𝛿 𝝂 𝟑 𝝂 𝐞 = 𝑐 12 𝑐 𝝂 𝟏 + 𝑠 12 𝑐 𝝂 𝟐 + 𝑠 13 𝑒 +𝑖𝛿 𝝂 𝟑 Dirac phase causes different 3-flavor oscillations for neutrinos and antineutrinos 𝜈 𝑒 → 𝜈 𝑒 same as 𝜈 𝑒 → 𝜈 𝑒 𝜈 𝑒 → 𝜈 𝜇 𝜈 𝑒 → 𝜈 𝜇 Distance [1000 km] for E = 1 GeV
20
n Neutrino Carabiner Now also in color Greek “nu”
Named for a subatomic particle with almost zero mass, … Now also in color n Greek “nu”
21
“Weighing” Neutrinos with KATRIN
Sensitive to common mass scale m for all flavors because of small mass differences from oscillations Best limit from Mainz und Troitsk m < 2.2 eV (95% CL) KATRIN can reach 0.2 eV Under construction Data taking to begin 2015/16
22
KATRIN Ante Portas (25 Nov 2006)
23
Weighing Neutrinos with the Universe
24
Cosmological Limit on Neutrino Masses
Cosmic neutrino “sea” ~112 cm-3 neutrinos + anti-neutrinos per flavor Ω 𝜈 ℎ 2 = 𝑚 𝜈 93 eV <0.25 For all stable flavors ∑ 𝑚 𝜈 ≲20 eV JETP Lett. 4 (1966) 120
25
What is wrong with neutrino dark matter?
Galactic Phase Space (“Tremaine-Gunn-Limit”) Maximum mass density of a degenerate Fermi gas Spiral galaxies mn > 20–40 eV Dwarf galaxies mn > 100–200 eV 𝜌 max = 𝑚 𝜈 𝑝 max 3 3 𝜋 𝑛 max = 𝑚 𝜈 𝑚 𝜈 𝑣 escape 𝜋 2 Neutrino Free Streaming (Collisionless Phase Mixing) At T < 1 MeV neutrino scattering in early universe is ineffective Stream freely until non-relativistic Wash out density contrasts on small scales Neutrinos are “Hot Dark Matter” Ruled out by structure formation Neutrinos Neutrinos Over-density
26
Sky Map of Galaxies (XMASS XSC)
27
Structure Formation with Hot Dark Matter
Standard LCDM Model Neutrinos with Smn = 6.9 eV Structure fromation simulated with Gadget code Cube size 256 Mpc at zero redshift Troels Haugbølle,
28
Neutrino Mass Limits Post Planck (2013)
CMB alone constraining Smn CMB + BAO constraining Smn + Neff CMB + BAO limit: Smn < 0.23 eV (95% CL) Ade et al. (Planck Collaboration), arXiv:
29
Future Cosmological Neutrino Mass Sensitivity
Pin down the neutrino mass in the sky! ESA’s Euclid satellite to be launched in 2020 Precision measurement of the universe out to redshift of 2 Basse, Bjælde, Hamann, Hannestad & Wong, arXiv: : Dark energy and neutrino constraints from a future EUCLID-like survey
30
Neutrinos as Astrophysical Messengers
Nuclear Reactors Sun Particle Accelerators Supernovae (Stellar Collapse) SN 1987A Earth Atmosphere (Cosmic Rays) Astrophysical Accelerators Earth Crust (Natural Radioactivity) Cosmic Big Bang (Today 330 n/cm3) Indirect Evidence
31
Geo Neutrinos: What is it all about?
We know surprisingly little about the Earth’s interior Deepest drill hole ~ 12 km Samples of crust for chemical analysis available (e.g. vulcanoes) Reconstructed density profile from seismic measurements Heat flux from measured temperature gradient TW (Expectation from canonical BSE model ~ 19 TW from crust and mantle, nothing from core) Neutrinos escape unscathed Carry information about chemical composition, radioactive energy production or even a hypothetical reactor in the Earth’s core
32
Geo Neutrinos Expected Geoneutrino Flux
KamLAND Scintillator-Detector (1000 t) Reactor Background
33
Reactor On-Off KamLAND Data
2011 Earthquake Reactors shut down Scintillator Purification KamLAND-Zen Construction KamLAND Collaboration, arXiv: (2013)
34
KamLAND Geo-Neutrino Flux
116 − Geoneutrino events (U/Th = 3.9 fixed) Separately free fitting: U events Th events Beginning of neutrino geophysics! KamLAND Collaboration, arXiv: (2013)
35
Applied Anti-Neutrino Physics (AAP)
Annual Conference Series since 2004 • Neutrino geophysics • Reactor monitoring (“Neutrinos for Peace”) Relatively small detectors can measure nuclear activity without intrusion Of interest for monitoring by International Atomic Energy Agency (Monitors fissile material in civil nuclear cycles)
36
What are the sources for the primary cosmic rays? Cosmic Rays
100 years later we are still asking What are the sources for the primary cosmic rays? Cosmic Rays Victor Hess (1911/12) Air Shower: 1019 eV primary particle 100 billion secondary particles at sea level
37
Neutrino Beams: Heaven and Earth
p Target: Protons or Photons 𝜋 0 𝜋 ± 𝜸 Approx. equal fluxes of photons & neutrinos 𝝁 𝝂 𝝁 𝒆 𝝂 𝒆 𝝂 𝝁 Equal neutrino fluxes in all flavors due to oscillations 𝝂 𝒆 𝝂 𝝁 𝝂 𝝉 F. Halzen (2002)
38
Nucleus of the Active Galaxy NGC 4261
39
IceCube Neutrino Telescope at the South Pole
Instrumentation of 1 km3 antarctic ice with ~ 5000 photo multipliers completed December 2010
40
Two High-Energy Events in IceCube
Ernie ~ 1.1 PeV Bert ~ 1.3 PeV
41
Ernie & Bert and 26 Additional Events in IceCube
Significance of all 28 events: 4.1s, Background − Ernie & Bert
42
SN 1006 over Sydney Supernova Neutrinos
43
Crab Nebula
44
Stellar Collapse and Supernova Explosion
Onion structure Degenerate iron core: r 109 g cm-3 T K MFe 1.5 Msun RFe 3000 km Hydrogen Burning Main-sequence star Collapse (implosion) Helium-burning star Helium Burning Hydrogen
45
Stellar Collapse and Supernova Explosion
Newborn Neutron Star ~ 50 km Proto-Neutron Star r ~ rnuc = 3 g cm-3 T ~ 30 MeV Collapse (implosion) Explosion
46
Stellar Collapse and Supernova Explosion
Newborn Neutron Star ~ 50 km Neutrino cooling by diffusion Gravitational binding energy Eb 3 1053 erg 17% MSUN c2 This shows up as 99% Neutrinos 1% Kinetic energy of explosion 0.01% Photons, outshine host galaxy Neutrino luminosity Ln ~ 3 1053 erg / 3 sec ~ 3 1019 LSUN While it lasts, outshines the entire visible universe Proto-Neutron Star r ~ rnuc = 3 g cm-3 T ~ 30 MeV
47
Diffuse Supernova Neutrino Background (DSNB)
• A few core collapses per second in the visible universe • Emitted 𝜈 energy density ~ extra galactic background light ~ 10% of CMB density • Detectable 𝜈 𝑒 flux at Earth ∼10 cm −2 s −1 mostly from redshift 𝑧∼1 • Confirm star-formation rate • Nu emission from average core collapse & black-hole formation • Pushing frontiers of neutrino astronomy to cosmic distances! Beacom & Vagins, PRL 93:171101,2004 Window of opportunity between reactor 𝜈 𝑒 and atmospheric 𝜈 bkg
48
Sanduleak -69 202 Supernova 1987A Sanduleak -69 202 23 February 1987
Tarantula Nebula Large Magellanic Cloud Distance 50 kpc ( light years)
49
Neutrino Signal of Supernova 1987A
Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty 1 min Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty 50 ms Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s Within clock uncertainties, all signals are contemporaneous
50
Do Neutrinos Gravitate?
Early light curve of SN 1987A Shapiro time delay for particles moving in a gravitational potential Δ𝑡=−2 𝐴 𝐵 𝑑𝑡 Φ 𝑟 𝑡 For trip from LMC to us, depending on galactic model, Δ𝑡≈1–5 months Neutrinos and photons respond to gravity the same to within 1–4× 10 −3 Longo, PRL 60:173, 1988 Krauss & Tremaine, PRL 60:176, 1988 • Neutrinos arrived several hours before photons as expected • Transit time for 𝜈 and 𝛾 same ( yr) within a few hours
51
Supernova 1987A Energy-Loss Argument
SN 1987A neutrino signal Neutrino sphere Volume emission of new particles Neutrino diffusion Emission of very weakly interacting particles would “steal” energy from the neutrino burst and shorten it. (Early neutrino burst powered by accretion, not sensitive to volume energy loss.) Late-time signal most sensitive observable
52
Flavor Oscillations in Core-Collapse Supernovae
Neutrino-neutrino refraction causes a flavor instability, flavor exchange between different parts of spectrum Flavor eigenstates are propagation eigenstates Neutrino flux Neutrino sphere MSW region
53
Neutrino Oscillations in Matter
3700 citations Neutrinos in a medium suffer flavor-dependent refraction f W Z n n n n f 𝑉 weak = 2 𝐺 F × 𝑁 e − 𝑁 n −𝑁 n for 𝜈 e for 𝜈 μ Lincoln Wolfenstein Typical density of Earth: 5 g/cm3 Δ 𝑉 weak ≈2× 10 −13 eV=0.2 peV
54
Flavor-Off-Diagonal Refractive Index
2-flavor neutrino evolution as an effective 2-level problem i 𝜕 𝜕𝑡 𝜈 𝑒 𝜈 𝜇 =𝐻 𝜈 𝑒 𝜈 𝜇 𝝂 Effective mixing Hamiltonian Z n n 𝐻= 𝑀 2 2𝐸 𝐺 F 𝑁 𝑒 − 𝑁 𝑛 − 𝑁 𝑛 𝐺 F 𝑁 𝜈 𝑒 𝑁 〈𝜈 𝑒 𝜈 𝜇 𝑁 〈𝜈 𝜇 𝜈 𝑒 𝑁 𝜈 𝜇 Mass term in flavor basis: causes vacuum oscillations Wolfenstein’s weak potential, causes MSW “resonant” conversion together with vacuum term Flavor-off-diagonal potential, caused by flavor oscillations. (J.Pantaleone, PLB 287:128,1992) Flavor oscillations feed back on the Hamiltonian: Nonlinear effects!
55
Collective Supernova Nu Oscillations since 2006
Two seminal papers in 2006 triggered a torrent of activities Duan, Fuller, Qian, astro-ph/ , Duan et al. astro-ph/ Balantekin, Gava & Volpe [ ]. Balantekin & Pehlivan [astro-ph/ ]. Blennow, Mirizzi & Serpico [ ]. Cherry, Fuller, Carlson, Duan & Qian [ , ]. Cherry, Wu, Fuller, Carlson, Duan & Qian [ ]. Cherry, Carlson, Friedland, Fuller & Vlasenko [ ]. Chakraborty, Choubey, Dasgupta & Kar [ ]. Chakraborty, Fischer, Mirizzi, Saviano, Tomàs [ , ]. Choubey, Dasgupta, Dighe & Mirizzi [ ]. Dasgupta & Dighe [ ]. Dasgupta, Dighe & Mirizzi [ ]. Dasgupta, Dighe, Raffelt & Smirnov [ ]. Dasgupta, Dighe, Mirizzi & Raffelt [ , ]. Dasgupta, Mirizzi, Tamborra & Tomàs [ ]. Dasgupta, Raffelt & Tamborra [ ]. Dasgupta, O'Connor & Ott [ ]. Duan [ ]. Duan, Fuller, Carlson & Qian [astro-ph/ , , , ]. Duan, Fuller & Qian [ , , , ]. Duan, Fuller & Carlson [ ]. Duan & Kneller [ ]. Duan & Friedland [ ]. Duan, Friedland, McLaughlin & Surman [ ]. Esteban-Pretel, Mirizzi, Pastor, Tomàs, Raffelt, Serpico & Sigl [ ]. Esteban-Pretel, Pastor, Tomàs, Raffelt & Sigl [ , ]. Fogli, Lisi, Marrone & Mirizzi [ ]. Fogli, Lisi, Marrone & Tamborra [ ]. Friedland [ ]. Gava & Jean-Louis [ ]. Gava & Volpe [ ]. Galais, Kneller & Volpe [ ]. Galais & Volpe [ ]. Gava, Kneller, Volpe & McLaughlin [ ]. Hannestad, Raffelt, Sigl & Wong [astro-ph/ ]. Wei Liao [ , ]. Lunardini, Müller & Janka [ ]. Mirizzi [ , ]. Mirizzi, Pozzorini, Raffelt & Serpico [ ]. Mirizzi & Serpico [ ]. Mirizzi & Tomàs [ ]. Pehlivan, Balantekin, Kajino & Yoshida [ ]. Pejcha, Dasgupta & Thompson [ ]. Raffelt [ , ]. Raffelt, Sarikas & Seixas [ ]. Raffelt & Seixas [ ]. Raffelt & Sigl [hep-ph/ ]. Raffelt & Smirnov [ , ]. Raffelt & Tamborra [ ]. Sawyer [hep-ph/ , , , ]. Sarikas, Raffelt, Hüdepohl & Janka [ ]. Sarikas, Tamborra, Raffelt, Hüdepohl & Janka [ ]. Saviano, Chakraborty, Fischer, Mirizzi [ ]. Väänänen & Volpe [ ]. Volpe, Väänänen & Espinoza [ ]. Vlasenko, Fuller Cirigliano [ ]. Wu & Qian [ ].
56
Operational Detectors for Supernova Neutrinos
MiniBooNE (200) HALO (tens) LVD (400) Borexino (100) Baksan (100) Super-K (104) KamLAND (400) Daya Bay (100) In brackets events for a “fiducial SN” at distance 10 kpc IceCube (106)
57
SuperNova Early Warning System (SNEWS)
Early light curve of SN 1987A Super-K IceCube Coincidence Server @ BNL Alert • Neutrinos arrive several hours before photons • Can alert astronomers several hours in advance LVD Borexino
58
Local Group of Galaxies
With megatonne class (30 x SK) 60 events from Andromeda Current best neutrino detectors sensitive out to few 100 kpc
59
The Red Supergiant Betelgeuse (Alpha Orionis)
First resolved image of a star other than Sun Distance (Hipparcos) 130 pc (425 lyr) If Betelgeuse goes Supernova: 6 107 neutrino events in Super-Kamiokande 2.4 103 neutrons /day from Si burning phase (few days warning!), need neutron tagging [Odrzywolek, Misiaszek & Kutschera, astro-ph/ ]
60
IceCube as a Supernova Neutrino Detector
SN signal at 10 kpc 10.8 Msun simulation of Basel group [arXiv: ] Accretion Cooling • Each optical module (OM) picks up Cherenkov light from its neighborhood • ~ 300 Cherenkov photons per OM from SN at 10 kpc, bkgd rate in one OM < 300 Hz • SN appears as “correlated noise” in ~ 5000 OMs • Significant energy information from time-correlated hits Pryor, Roos & Webster, ApJ 329:355, Halzen, Jacobsen & Zas, astro-ph/ Demirörs, Ribordy & Salathe, arXiv:
61
First Realistic 3D Simulation (27 M ⊙ Garching Group)
Hanke, Müller, Wongwathanarat, Marek & Janka [arXiv: (26 March 2013)]
62
Variability seen in Neutrinos (3D Model)
Tamborra, Hanke, Müller, Janka & Raffelt, arXiv: See also Lund, Marek, Lunardini, Janka & Raffelt, arXiv:
63
Next Generation Large-Scale Detector Concepts
5-100 kton liquid Argon DUSEL LBNE 100 kton scale scintillator Hyper-K Memphys LENA HanoHano Megaton-scale water Cherenkov
64
LENA: From Dream to Reality
Juno (formerly Daya Bay II), Collaboration formed (2014) 20 kt scintillator detector Hierarchy determination with reactor neutrinos Also good for low-energy neutrino astronomy 50 kt Scintillator
65
Summary Understanding neutrino internal properties — a mature field
Neutrino mixing parameters: Matrix well known from astro and lab evidence New experiments for missing parameters in the making Absolute masses yet to be determined (KATRIN, cosmology) Majorana nature yet to be found (neutrino-less double beta expts) Neutrinos as astrophysical messengers — a field in its infancy Detailed measurement of solar nus (ca 60,000 events in Super-K) First geo-neutrinos (ca 116 events in KamLAND) SN 1987A (ca 20 events) First high-E events in IceCube (Ernie, Bert, and 26 others) More statistics needed in all of these areas: bigger/better detectors planned or discussed - Waiting for next nearby supernova
66
Neutrinos at the center
Astrophysics & Cosmology Elementary Particle Physics n Cosmic Rays
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.