Download presentation
Presentation is loading. Please wait.
Published byMadeline Simon Modified over 9 years ago
1
شبكــات و إتصالات د. عـــادل يوسف أبو القاسم
2
محتويات المقــــرر Introduction The Physical Layer Data Link Layer The Network Layer The Transport Layer The Session Layer The Presentation Layer
3
3 References Computer Networking: A Top Down Approach Fifth edition. Jim Kurose, Keith Ross Addison-Wesley, July 2010. Computer Networks Fifth edition. Andrew S. Tanenbaum, David J. Wetherall Pearson Education, Inc 2011.
4
4 What is a Network? A network consists of 2 or more computers connected together, and they can communicate and share resources (e.g. information)
5
5 Why Networking? Sharing information — i.e. data communication Do you prefer these? Or this?
6
6 Sharing hardware or software Centralize administration and support E.g. print document E.g. Internet-based, so everyone can access the same administrative or support application from their PCs
7
النماذج المرجعية للشــــبكات N ETWORK R EFERENCE M ODELS اهم نموذجين مستخدمين في مجال شبكات الحاسوب : نموذج OSI ونموذج TCP/IP. وبالرغم من ان البرتكولات المتعلقة بنموذج OSI لم تعد مستخدمة حالياً, ولكن النموذج في حد ذاته لا زال مستخدماً وخصائص كل طبقة في النموذج لا تزال من الاهمية بمكان. العكس تماما بالنسبة لنموذج TCP/IP حيث ان النموذج في حد ذاته غير مستخدم كثيراً ولكن البرتكولات التي تتبع للنموذج مستخدمة كثيراً في مجال الشبكات, لهذا السبب سنذكر تفاصيل النموذجين.
8
نموذج ال (OSI) O PEN S YSTEMS I NTERCONNECTION تم تطوير نموذج OSI بواسطة International Standards Organization (ISO) كأول خطوة لتوحيد معايير البرتكولات المستخدمة في كل طبقة. سمي النموذج Open Systems Interconnection لأنه يقوم بربط الانظمة المفتوحة Open Systems و هي الانظمة المفتوحة او المستعدة للاتصال بأي نظام آخر.
9
نموذج ال (OSI) O PEN S YSTEMS I NTERCONNECTION نموذج OSI له سبع طبقات, وقد تم الوصول الى هذه الطبقات بناء على المبادئ التالية : 1. يتم انشاء طبقة اذا احتجنا الى وصف تجريد مختلف. 2. كل طبقة يجب ان تؤدي وظيفة محددة وموضحة تماماً. 3. حدود كل طبقة يجب اختيارها بحيث تقلل انسياب البيانات من خلال واجهات الطبقة. 4. عدد الطبقات يجب ان يكون كبيراً بحيث لا يتم ادراج وظائف مختلفة في نفس الطبقة, كما يجب ان يكون عدد الطبقات صغيراً بحيث لا تكون معمارية النموذج كبيرة ومعقدة.
10
طبقة التطبيقات Application Layer طبقة التمثيل Presentation Layer طبقة الجلسة Session Layer طبقة النقل Transport Layer طبقة الشبكة Network Layer طبقة ربط البيانات Data link Layer الطبقة الفيزيائية Physical Layer نموذج ال (OSI) O PEN S YSTEMS I NTERCONNECTION
11
الطبقة الفيزيائية P HYSICAL L AYER تهتم الطبقة الفيزيائية بارسال البتات (bits) الخام من خلال قناة اتصال. حيث تجيب على الاسئلة ماهي الاشارات الكهربية التي ستمثل 1 و 0, كم من النانو ثانية تنتهي عندها الاشارة, هل يمكن ان يتم الارسال في نفس الوقت في كلا الاتجاهين, كيف يتم بدء الاتصال, كيف يتم انهاء الاتصال, كم عدد ال pins في كل network connector وفيما تستخدم كل pin
12
طبقة ربط البيانات T HE D ATA L INK L AYER وهي الطبقة الثانية في نموذج OSI ويتلخص عمل هذه الطبقة بتهيئة البيانات بالشكل المناسب ليتم إرسالها وتسليمها للطبقة الفيزيائية حتى تتمكن من نقلها عبر خطوط الاتصال. تقوم بهذه المهمة بجعل المرسل يقوم بتقسم البيانات الى مقاطع frames ( حجم ال frame عادة عدد قليل من مئات او الآف من البايتات ), وارسال هذه ال frames بصورة متسلسلة. اذا كانت الخدمة reliable فأن المستلم يؤكد الوصول السليم لل frame بارسال اشعار استلام acknowledgement.
13
ايضا من الاشياء التي تهتم بها طبقة ربط المعطيات هي كيفية حماية المرسل الذي يرسل البيانات بصورة سريعة من اغراق المستلم البطيء بالبيانات. بعض تقنيات حركة البيانات يمكن استخدامها لإعلام المرسل متى يكون المستقبل جاهزاً لاستلام البيانات. شبكات البث Broadcast networks تحتاج الى وظيفة اضافية من طبقة ربط المعطيات وهي كيفية التحكم في الوصول للقناة المشتركة shared channel. هنالك طبقة جزئية من طبقة ربط المعطيات تسمى Medium Access Control (MAC) تتعامل مع هذه القضية. طبقة ربط البيانات T HE D ATA L INK L AYER
14
طبقة الشبكة T HE N ETWORK L AYER وهي عبارة عن الطبقة الثالثة في نموذج OSI وتستخدم لتوحيد وعنونة الرسائل وترجمة العناوين المنطقية والأسماء إلى عناوين فيزيائية تفهمها الشبكة ويتلخص عمل هذه الطبقة في القيام بتحديد حجم حزم البيانات packet حتى يتم تسليمها إلى الطبقة الثانية. ايضا تقوم هذه الطبقة بتحديد المسار الذي ستسلكه الحزم عند القيام بإرسالها.
15
طبقة النقل T HE T RANSPORT L AYER وهي الطبقة الرابعة في النموذج وهي عبارة عن الطبقة التي تفصل بين الطبقات الموجهة للمستخدم User – Oriented والطبقات الموجهة للشبكة Network – Oriented وهي الطبقة المسئولة عن ضمان تسليم حزم البيانات إلى المستقبل بشكل خالي من الأخطاء و دون أن ينقص منها أي جزء وكذلك يتم من خلالها التحكم بحركة الرسائل.
16
طبقة الجلسة T HE S ESSION L AYER تسمح طبقة الجلسة للمستخدمين المتواجدين على اجهزة مختلفة في الشبكة بانشاء جلسة session بينهم. ايضا تقوم طبقة الجلسة بإصدار تقارير عن الاتصالات التي تقوم بها الأجهزة مثلا الزمن المستغرق في عملية الاتصال وترتيب الرسائل المرسلة حسب وقت إرسالها ومدة إرسال الرسالة.
17
طبقة التمثيل T HE P RESENTATION L AYER تهتم طبقة التمثيل بالقواعد والمعاني للبيانات المرسلة (syntax and semantics). ومن اشهر الطرق التي يتم استخدامها في تمثيل البيانات طريقة ASCII وطريقة Unicode. تمكن طبقة التمثيل من القيام بإجراء التعامل مع جهاز يستخدم ASCII وجهاز يستخدم EBCDIC حيث تقوم بالتحويل بينهم.
18
طبقة التطبيقات T HE A PPLICATION L AYER وتتضمن هذه الطبقة جميع التطبيقات وبرامج أنظمة التشغيل التي يحتاجها المستخدم. من اهم برتكولات طبقة التطبيقات هو برتكول HTTP وهو يعتبر الاساس للشبكة العنكبوتية الدولية World Wide Web.
19
19 How many kinds of Networks? Depending on one’s perspective, we can classify networks in different ways Based on transmission media: Wired (UTP, coaxial cables, fiber-optic cables) and Wireless Based on network size: LAN and WAN (and MAN) Based on management method: Peer-to-peer and Client/Server Based on topology (connectivity): Bus, Star, Ring … :
20
20 Two main categories: Guided ― wires, cables Unguided ― wireless transmission, e.g. radio, microwave, infrared, sound, sonar We will concentrate on guided media here: Twisted-Pair cables: Unshielded Twisted-Pair (UTP) cables Shielded Twisted-Pair (STP) cables Coaxial cables Fiber-optic cables Transmission Media
21
21 If the pair of wires are not twisted, electromagnetic noises from, e.g., motors, will affect the closer wire more than the further one, thereby causing errors Twisted-Pair Cables
22
22 Unshielded Twisted-Pair (UTP) Typically wrapped inside a plastic cover (for mechanical protection) A sample UTP cable with 5 unshielded twisted pairs of wires Metal Insulator
23
23 Shielded Twisted-Pair (STP) STP cables are similar to UTP cables, except there is a metal foil or braided-metal-mesh cover that encases each pair of insulated wires
24
24 Categories of UTP Cables EIA classifies UTP cables according to the quality: Category 1 ― the lowest quality, only good for voice, mainly found in very old buildings, not recommended now Category 2 ― good for voice and low data rates (up to 4Mbps for low-speed token ring networks) Category 3 ― at least 3 twists per foot, for up to 10 Mbps (common in phone networks in residential buildings) Category 4 ― up to 16 Mbps (mainly for token rings) Category 5 (or 5e ) ― up to 100 Mbps (common for networks targeted for high-speed data communications) Category 6 ― more twists than Cat 5, up to 1 Gbps
25
25 Coaxial Cables In general, coaxial cables, or coax, carry signals of higher freq (100KHz–500MHz) than UTP cables Outer metallic wrapping serves both as a shield against noise and as the second conductor that completes the circuit
26
26 Fiber-Optic Cables Light travels at 3 10 8 ms -1 in free space and is the fastest possible speed in the Universe Light slows down in denser media, e.g. glass Refraction occurs at interface, with light bending away from the normal when it enters a less dense medium Beyond the critical angle total internal reflection
27
27 An optical fiber consists of a core (denser material) and a cladding (less dense material) Simplest one is a multimode step-index optical fiber Multimode = multiple paths, whereas step-index = refractive index follows a step-function profile (i.e. an abrupt change of refractive index between the core and the cladding) Light bounces back and forth along the core Common light sources: LEDs and lasers
28
28 Advantages and Disadvantages Noise resistance ― external light is blocked by outer jacket Less signal attenuation ― a signal can run for miles without regeneration (currently, the lowest measured loss is about ~4% or 0.16dB per km) Higher bandwidth ― currently, limits on data rates come from the signal generation/reception technology, not the fiber itself Cost ― Optical fibers are expensive Installation/maintenance ― any crack in the core will degrade the signal, and all connections must be perfectly aligned
29
29 LAN and WAN Local Area Network (LAN) Small network, short distance A room, a floor, a building Limited by no. of computers and distance covered Usually one kind of technology throughout the LAN Serve a department within an organization Examples: Network inside the Student Computer Room Network inside CF502 Network inside your home
30
30 Wide Area Network (WAN) A network that uses long-range telecommunication links to connect 2 or more LANs/computers housed in different places far apart. Towns, states, countries Examples: Network of our Campus Internet WAN Student Computer Centre Your home USA
31
31 Example WAN technologies : ISDN – Integrated Service Digital Network Basic rate: 192 Kbps Primary rate: 1.544Mbps T-Carriers ― basically digital phone lines T1: 1.544Mbps T3: 28 T1 Frame relay Each link offers 1.544Mbps or even higher ATM – Asynchronous Transfer Mode Support B-ISDN: 155Mbps or 622Mbps or higher SONET – Synchronous Optical Network Basic rate OC1: 51.84Mbps Support OC12 and up to OC192 (9953.28Mbps) or even higher in the future
32
32 Example of WAN: Broadband Cable Network Cable TV services have been extensively developed in most modern cities Cable TV companies try to make use of their coaxial cable installed (that are supposed to carry TV signals) to deliver broadband data services Many cable network wiring has been replaced with hybrid fiber- coax (HFC) ― i.e. use of fiber-optic cable to connect to the subscribers’ buildings, and then the original coaxial cable to connect to each household
33
33 Peer-to-Peer Networks Peer-to-peer network is also called workgroup No hierarchy among computers all are equal No administrator responsible for the network Peer-to-peer
34
34 Advantages of peer-to-peer networks: Low cost Simple to configure User has full accessibility of the computer Disadvantages of peer-to-peer networks: May have duplication in resources Difficult to uphold security policy Difficult to handle uneven loading Where peer-to-peer network is appropriate: 10 or less users No specialized services required Security is not an issue Only limited growth in the foreseeable future
35
35 Clients and Servers Clients WorkstationNetwork Clients (Workstation) Computers that request network resources or services ServersNetwork Servers Computers that manage and provide network resources and services to clients Usually have more processing power, memory and hard disk space than clients Run Network Operating System that can manage not only data, but also users, groups, security, and applications on the network Servers often have a more stringent requirement on its performance and reliability
36
36 Advantages of client/server networks Facilitate resource sharing – centrally administrate and control Facilitate system backup and improve fault tolerance Enhance security – only administrator can have access to Server Support more users – difficult to achieve with peer-to-peer networks Disadvantages of client/server networks High cost for Servers Need expert to configure the network Introduce a single point of failure to the system
37
37 Topology ― 3 basic types How so many computers are connected together? Bus TopologyRing Topology Star Topology Hub
38
38 Bus Topology Simple and low-cost A single cable called a trunk (backbone, segment) Only one computer can send messages at a time Passive topology - computer only listen for, not regenerate data Star Topology Each computer has a cable connected to a single point More cabling, hence higher cost All signals transmission through the hub; if down, entire network down Depending on the intelligence of hub, two or more computers may send message at the same time
39
39 How to construct a network with Bus / Star Topology? Star Topology Bus Topology BNC T-Connector Coaxi al cable Network Card
40
40 Ring Topology Every computer serves as a repeater to boost signals Typical way to send data: Token passing only the computer who gets the token can send data Disadvantages Difficult to add computers More expensive If one computer fails, whole network fails T T T dat a T T T T T T Ac k T T T T
41
Thank You
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.