Download presentation
Presentation is loading. Please wait.
Published byAlannah Mitchell Modified over 9 years ago
1
ESE534 -- Spring 2014 -- DeHon 1 ESE534: Computer Organization Day 19: April 7, 2014 Interconnect 5: Meshes
2
ESE534 -- Spring 2014 -- DeHon 2 Previously Saw – need to exploit locality/structure in interconnect –a mesh might be useful –Rent’s Rule as a way to characterize structure
3
ESE534 -- Spring 2014 -- DeHon 3 Today Mesh: –Channel width bounds –Linear population –Switch requirements –Routability –Segmentation –Clusters
4
ESE534 -- Spring 2014 -- DeHon 4 Mesh Street Analogy
5
ESE534 -- Spring 2014 -- DeHon 5 Manhattan
6
ESE534 -- Spring 2014 -- DeHon 6 Mesh switchbox
7
Mesh Strengths? ESE534 -- Spring 2014 -- DeHon 7
8
8 Mesh Channels Lower Bound on w? Bisection Bandwidth –BW N p –channels in bisection =N 0.5 Channel width grows with N.
9
ESE534 -- Spring 2014 -- DeHon 9 Straight-forward Switching Requirements Total Switches? Switching Delay?
10
ESE534 -- Spring 2014 -- DeHon 10 Switch Delay Switching Delay: –Manhattan distance |X i -X j |+|Y i -Y j | – 2 (N subarray ) worst case: N subarray = N
11
ESE534 -- Spring 2014 -- DeHon 11 Total Switches Switches per switchbox: –4 (3w w)/2 = 6w 2 –Bidirectional switches (N W same as W N) double count
12
ESE534 -- Spring 2014 -- DeHon 12 Total Switches Switches per switchbox: –6w 2 Switches into network: –(K+1) w Switches per PE: –6w 2 +(K+1) w –w = cN p-0.5 –Total w 2 N 2p-1 Total Switches: N×(Sw/PE) N 2p
13
ESE534 -- Spring 2014 -- DeHon 13 Routability? Asking if you can route in a given channel width is: –NP-complete Contrast with Beneŝ, Beneš-crossover tree….
14
Linear Population Switchbox ESE534 -- Spring 2014 -- DeHon 14
15
ESE534 -- Spring 2014 -- DeHon 15 Traditional Mesh Population: Linear Switchbox contains only a linear number of switches in channel width
16
ESE534 -- Spring 2014 -- DeHon 16 Linear Mesh Switchbox Each entering channel connect to: –One channel on each remaining side (3) –4 sides –W wires –Bidirectional switches (N W same as W N) double count –3 4 W/2=6W switches vs. 6w 2 for full population
17
ESE534 -- Spring 2014 -- DeHon 17 Total Switches Switches per switchbox: –6w Switches into network: –(K+1) w Switches per PE: –6w +(K+1) w –w = cN p-0.5 –Total N p-0.5 Total Switches: N×(Sw/PE) N p+0.5 > N
18
ESE534 -- Spring 2014 -- DeHon 18 Total Switches (linear population) Total Switches N p+0.5 N < N p+0.5 < N 2p Switches grow faster than nodes Wires grow faster than switches
19
ESE534 -- Spring 2014 -- DeHon 19 Checking Constants (Preclass 3) When do linear population designs become wire dominated? Wire pitch = 4 F switch area = 625 F 2 wire area: (4w) 2 switch area: 6 625 w Crossover?
20
ESE534 -- Spring 2014 -- DeHon 20 Checking Constants: Full Population Does full population really use all the wire physical tracks? Wire pitch = 4F switch area = 625 F 2 wire area: (4w) 2 switch area: 6 625 w 2 effective wire pitch: 60F 15 times pitch
21
ESE534 -- Spring 2014 -- DeHon 21 Practical Full population is always switch dominated –doesn’t really use all the potential physical tracks –…even with only two metal layers Just showed: –would take 15 Mapping Ratio for linear population to take same area as full population (once crossover to wire dominated) Can afford to not use some wires perfectly –to reduce switches (area)
22
ESE534 -- Spring 2014 -- DeHon 22 Diamond Switch Typical linear switchbox pattern: –Used by Xilinx
23
ESE534 -- Spring 2014 -- DeHon 23 Mapping Ratio? How bad is it? How much wider do channels have to be? Mapping Ratio: –detail channel width required / global ch width
24
ESE534 -- Spring 2014 -- DeHon 24 Mapping Ratio Empirical: –Seems plausibly, constant in practice Theory/provable: –There is no Constant Mapping Ratio At least detail/global –can be arbitrarily large!
25
ESE534 -- Spring 2014 -- DeHon 25 Domain Structure Once enter network (choose color) can only switch within domain
26
ESE534 -- Spring 2014 -- DeHon 26 Detail Routing as Coloring Global Route channel width = 2 Detail Route channel width = N –Can make arbitrarily large difference
27
ESE534 -- Spring 2014 -- DeHon 27 Routability Domain Routing is NP-Complete –can reduce coloring problem to domain selection i.e. map adjacent nodes to same channel Previous example shows basic shape –(another reason routers are slow)
28
ESE534 -- Spring 2014 -- DeHon 28 Routing Lack of detail/global mapping ratio –Says detail can be arbitrarily worse than global –Doesn’t necessarily say domain routing is bad Maybe can avoid this effect by changing global route path? –Says global not necessarily predict detail –Argument against decomposing mesh routing into global phase and detail phase Modern FPGA routers do not VLSI routers and earliest FPGA routers did
29
Buffering and Segmentation ESE534 -- Spring 2014 -- DeHon 29
30
Buffered Bidirectional Wires Logic C Block S Block 30 ESE534 -- Spring 2014 -- DeHon
31
31 Segmentation To improve speed (decrease delay) Allow wires to bypass switchboxes Maybe save switches? Certainly cost more wire tracks
32
ESE534 -- Spring 2014 -- DeHon 32 Segmentation Segment of Length L seg –6 switches per switchbox visited –Only enters a switchbox every L seg –SW/sbox/track of length Lseg = 6/L seg
33
ESE534 -- Spring 2014 -- DeHon 33 Segmentation Reduces switches on path N/L seg May get fragmentation Another cause of unusable wires
34
ESE534 -- Spring 2014 -- DeHon 34 Segmentation: Corner Turn Option Can you corner turn in the middle of a segment? If can, need one more switch SW/sbox/track = 5/L seg + 1
35
Buffered Switch Composition ESE534 -- Spring 2014 -- DeHon 35
36
Buffered Switch Composition ESE534 -- Spring 2014 -- DeHon 36
37
Delay of Segment ESE534 -- Spring 2014 -- DeHon 37
38
Segment R and C What contributes to? R seg ? C seg ? ESE534 -- Spring 2014 -- DeHon 38
39
Preclass 4 Fillin Tseg table together. ESE534 -- Spring 2014 -- DeHon 39
40
Preclass 4 What L seg minimizes delay for: Distance=1? Distance=2? Distance=6? Distance=10? Distance=20? ESE534 -- Spring 2014 -- DeHon 40
41
ESE534 -- Spring 2014 -- DeHon 41 VPR L seg =4 Pix
42
ESE534 -- Spring 2014 -- DeHon 42 VPR L seg =4 Route
43
Effect of Segment Length? Experiment with on HW9 ESE534 -- Spring 2014 -- DeHon 43
44
Connection Boxes ESE534 -- Spring 2014 -- DeHon 44
45
ESE534 -- Spring 2014 -- DeHon 45 C-Box Depopulation Not necessary for every input to connect to every channel Saw last time: –K (N-K+1) switches Maybe use fewer?
46
ESE534 -- Spring 2014 -- DeHon 46 IO Population Toronto Model –Fc fraction of tracks which an input connects to IOs spread over 4 sides Maybe show up on multiple –Shown here: 2
47
ESE534 -- Spring 2014 -- DeHon 47 IO Population
48
Clustering ESE534 -- Spring 2014 -- DeHon 48
49
ESE534 -- Spring 2014 -- DeHon 49 Leaves Not LUTs Recall cascaded LUTs Often group collection of LUTs into a Logic Block
50
ESE534 -- Spring 2014 -- DeHon 50 Logic Block [Betz+Rose/IEEE D&T 1998] What does clustering do for delay?
51
Delay versus Cluster Size ESE534 -- Spring 2014 -- DeHon 51 [Lu et al., FPGA 2009]
52
ESE534 -- Spring 2014 -- DeHon 52 Area versus Cluster Size [Lu et al., FPGA 2009]
53
ESE534 -- Spring 2014 -- DeHon 53 Review: Mesh Design Parameters Cluster Size –Internal organization LB IO (Fc, sides) Switchbox Population and Topology Segment length distribution –and staggering Switch rebuffering
54
ESE534 -- Spring 2014 -- DeHon 54 Big Ideas [MSB Ideas] Mesh natural 2D topology –Channels grow as (N p-0.5 ) –Wiring grows as (N 2p ) –Linear Population: Switches grow as (N p+0.5 ) –Worse than shown for hierarchical Unbounded global detail mapping ratio Detail routing NP-complete But, seems to work well in practice…
55
ESE534 -- Spring 2014 -- DeHon 55 Admin HW8 due Wednesday HW9 out Reading for Wednesday on web
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.