Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tutorial I Circuit Simulation Boonchuay Supmonchai Integrated Design Application Research (IDAR) Laboratory June 24, 2005.

Similar presentations


Presentation on theme: "Tutorial I Circuit Simulation Boonchuay Supmonchai Integrated Design Application Research (IDAR) Laboratory June 24, 2005."— Presentation transcript:

1 Tutorial I Circuit Simulation Boonchuay Supmonchai Integrated Design Application Research (IDAR) Laboratory June 24, 2005

2 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 2 Outline  Introduction to SPICE  Basic Commands and elements in SPICE  SPICE MOSFET models  Device Characterization  Pitfalls and Fallacies

3 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 3 Simulations in IC Processes  Fabricating chips is expensive and time-consuming; need good simulation CAD tools and hard work.ArchitectureCircuit Process Logic Level of Abstraction HighLow How factors in a process (e.g., time and temperature) affect device physical and electrical characteristics - SUPREME Use device models and netlist to predict circuit voltages and currents, which indicate performance and power consumption - SPICE Predict function of digital circuits and verify correct logical operation of designs - HDL Predict throughput and memory access patterns at the RTL, for design decision such as pipelining and cache organization

4 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 4 Introduction to SPICE  SPICE  Simulation Program with Integrated Circuit Emphasis  Developed in 1970’s at Berkeley  Written in FORTRAN for punch-card machines  Circuits elements are called cards SPICE deck  Complete description is called a SPICE deck  SPICE has been regarded as de facto standard in circuit simulation.  Commercial releases of SPICE (e.g., PSPICE and HSPICE) typically contain a much larger selection of refined models.

5 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 5 SPICE Decks  Writing a SPICE deck is like writing a good program  Plan  Plan: sketch schematic on paper or in editor  Modify existing decks whenever possible  Code  Code: strive for clarity  Start with name, email, date, purpose  Generously comment  Test  Test:  Predict what results should be  Compare with actual  Garbage In, Garbage Out!

6 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 6 SPICE Elements LetterElement RResistor CCapacitor LInductor KMutual Inductor VIndependent voltage source IIndependent current source MMOSFET DDiode QBipolar transistor WLossy transmission line XSubcircuit EVoltage-controlled voltage source GVoltage-controlled current source HCurrent-controlled voltage source FCurrent-controlled current source

7 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 7 Units in SPICE LetterUnitMagnitude aatto 10 -18 ffemto 10 -15 ppico 10 -12 nnano 10 -9 umicro 10 -6 mmilli 10 -3 kkilo 10 3 xmega 10 6 ggiga 10 9 Ex: 100 femtofarad capacitor = 100fF, 100f, 100e-15

8 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 8 Sources  DC Source Vdd vdd gnd 2.5  Piecewise Linear Source Vin in gnd pwl 0ps 0 100ps 0 150ps 1.8 800ps 1.8  Pulsed Source Vck clk gnd PULSE 0 1.8 0ps 100ps 100ps 300ps 800ps

9 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 9 Example: RC Circuit * rc.sp * David_Harris@hmc.edu 2/2/03 * Find the response of RC circuit to rising input *------------------------------------------------ * Parameters and models *------------------------------------------------.option post *------------------------------------------------ * Simulation netlist *------------------------------------------------ Viningndpwl0ps 0 100ps 0 150ps 1.8 800ps 1.8 R1inout2k C1outgnd100f *------------------------------------------------ * Stimulus *------------------------------------------------.tran 20ps 800ps.plot v(in) v(out).end R1 = 2KΩ C1 = 100fF Vin + Vout -

10 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 10 RC Circuit Result (Textual) legend: a: v(in) a: v(in) b: v(out) b: v(out) time v(in) time v(in) (ab ) 0. 500.0000m 1.0000 1.5000 2.0000 (ab ) 0. 500.0000m 1.0000 1.5000 2.0000 + + + + + + + + + + 0. 0. -2------+------+------+------+------+------+------+------+- 0. 0. -2------+------+------+------+------+------+------+------+- 20.0000p 0. 2 + + + + + + + + 20.0000p 0. 2 + + + + + + + + 40.0000p 0. 2 + + + + + + + + 40.0000p 0. 2 + + + + + + + + 60.0000p 0. 2 + + + + + + + + 60.0000p 0. 2 + + + + + + + + 80.0000p 0. 2 + + + + + + + + 80.0000p 0. 2 + + + + + + + + 100.0000p 0. 2 + + + + + + + + 100.0000p 0. 2 + + + + + + + + 120.0000p 720.000m +b + + a+ + + + + + 120.0000p 720.000m +b + + a+ + + + + + 140.0000p 1.440 + b + + + + + a + + + 140.0000p 1.440 + b + + + + + a + + + 160.0000p 1.800 + +b + + + + + +a + 160.0000p 1.800 + +b + + + + + +a + 180.0000p 1.800 + + b + + + + + +a + 180.0000p 1.800 + + b + + + + + +a + 200.0000p 1.800 -+------+------+b-----+------+------+------+------+a-----+- 200.0000p 1.800 -+------+------+b-----+------+------+------+------+a-----+- 220.0000p 1.800 + + + b + + + + +a + 220.0000p 1.800 + + + b + + + + +a + 240.0000p 1.800 + + + +b + + + +a + 240.0000p 1.800 + + + +b + + + +a + 260.0000p 1.800 + + + + b + + + +a + 260.0000p 1.800 + + + + b + + + +a + 280.0000p 1.800 + + + + b+ + + +a + 280.0000p 1.800 + + + + b+ + + +a + 300.0000p 1.800 + + + + +b + + +a + 300.0000p 1.800 + + + + +b + + +a + 320.0000p 1.800 + + + + + b + + +a + 320.0000p 1.800 + + + + + b + + +a + 340.0000p 1.800 + + + + + b + + +a + 340.0000p 1.800 + + + + + b + + +a + 360.0000p 1.800 + + + + + b + +a + 360.0000p 1.800 + + + + + b + +a + 380.0000p 1.800 + + + + + +b + +a + 380.0000p 1.800 + + + + + +b + +a + 400.0000p 1.800 -+------+------+------+------+------+--b---+------+a-----+- 400.0000p 1.800 -+------+------+------+------+------+--b---+------+a-----+- 420.0000p 1.800 + + + + + + b + +a + 420.0000p 1.800 + + + + + + b + +a + 440.0000p 1.800 + + + + + + b + +a + 440.0000p 1.800 + + + + + + b + +a + 460.0000p 1.800 + + + + + + b+ +a + 460.0000p 1.800 + + + + + + b+ +a + 480.0000p 1.800 + + + + + + b +a + 480.0000p 1.800 + + + + + + b +a + 500.0000p 1.800 + + + + + + +b +a + 500.0000p 1.800 + + + + + + +b +a + 520.0000p 1.800 + + + + + + +b +a + 520.0000p 1.800 + + + + + + +b +a + 540.0000p 1.800 + + + + + + + b +a + 540.0000p 1.800 + + + + + + + b +a + 560.0000p 1.800 + + + + + + + b +a + 560.0000p 1.800 + + + + + + + b +a + 580.0000p 1.800 + + + + + + + b +a + 580.0000p 1.800 + + + + + + + b +a + 600.0000p 1.800 -+------+------+------+------+------+------+---b--+a-----+- 600.0000p 1.800 -+------+------+------+------+------+------+---b--+a-----+- 620.0000p 1.800 + + + + + + + b +a + 620.0000p 1.800 + + + + + + + b +a + 640.0000p 1.800 + + + + + + + b +a + 640.0000p 1.800 + + + + + + + b +a + 660.0000p 1.800 + + + + + + + b +a + 660.0000p 1.800 + + + + + + + b +a + 680.0000p 1.800 + + + + + + + b +a + 680.0000p 1.800 + + + + + + + b +a + 700.0000p 1.800 + + + + + + + b+a + 700.0000p 1.800 + + + + + + + b+a + 720.0000p 1.800 + + + + + + + b+a + 720.0000p 1.800 + + + + + + + b+a + 740.0000p 1.800 + + + + + + + b+a + 740.0000p 1.800 + + + + + + + b+a + 760.0000p 1.800 + + + + + + + b+a + 760.0000p 1.800 + + + + + + + b+a + 780.0000p 1.800 + + + + + + + ba + 780.0000p 1.800 + + + + + + + ba + 800.0000p 1.800 -+------+------+------+------+------+------+------ba-----+- 800.0000p 1.800 -+------+------+------+------+------+------+------ba-----+- + + + + + + + + + +

11 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 11 RC Circuit Result (Graphical)

12 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 12 MOSFET Elements  M element for MOSFET M1 3 1 0 0 NMOD L=1U W=10U AD=120P PD=42U Mname drain gate source body type + W= L= + W= L= + AS= AD = + AS= AD = + PS= PD= + PS= PD=  Example: Node Name

13 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 13 MOSFET Models  Earlier SPICE versions had three built-in MOSFET models:  LEVEL 1 (MOS1)  LEVEL 1 (MOS1) - Square law I-V characteristic  LEVEL 2 (MOS2)  LEVEL 2 (MOS2) - Detailed analytical MOSFET  LEVEL 3 (MOS3)  LEVEL 3 (MOS3) - Semi-empirical  MOS2 and MOS3 include second-order effects such as velocity saturation, mobility degradation, subthreshold conduction, and DIBL.  All three LEVELs do not provide good fits to the characteristics of modern devices.

14 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 14 MOSFET Models (2)  For modern submicron devices, the Berkeley Short-Channel IGFET Model (BSIM) is the most widely used (commercially and academically).  BSIM version 1, 2, 3v3, and 4 are implemented as SPICE level 13, 39, 49, and 54, respectively  BSIM is a very elaborate model that are derived from the underlying device physics but use an enormous number of parameters to fit the behavior of modern transistor.  BSIM version 3v3 requires over 27 pages of over 100 parameters and device equations to describe the model.

15 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 15 Selection of Models  The level (type) of MOSFET model to be used in a particular simulation can be specified through the.MODEL statement in SPICE.  With the statement, the user can describe a large number of model parameters including geometry of the device such as channel length and width. M1 3 1 0 0 NMOD L=1U W=10U AD=120P PD=42U MDEV32 14 9 12 5 PMOD L=1.2U W=20U.MODEL NMOD NMOS (LEVEL=1 VTO=1.4 KP=4.5E-5 CBD=5PF CBS=2PF).MODEL PMOD PMOS (VTO=-2 KP=3.0E-5 LAMBDA=0.02 GAMMA=0.4 + CBD=4PF CBS=2PF RD=5 RS=3 CGDO=1PF + CGSO=1PF CGBO=1PF)

16 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 16 NMOS Transistor Circuit Model

17 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 17 LEVEL 1 Model Equations  Corresponding to our unified model for manual analyses in the class.  Basic Current Models: where

18 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 18 LEVEL 1 Model Equations (II) KP, VTO, GAMMA, PHI, and LAMBDA  Completely characterized by the five electrical parameters: k’, V T0, , |2  F |, and (KP, VTO, GAMMA, PHI, and LAMBDA in SPICE) TOX  Physical parameters, e.g., t ox (TOX) can be specified in stead of the electrical parameters. override  If both present simultaneously in the model, electrical parameters always override physical parameters.  Though grossly inaccurate, LEVEL 1 offers a quick, useful estimate of the circuits.

19 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 19 LEVEL 2 and 3 Model Equations  Improved models for the drain current  Level 2: A number of semi-empirical corrections have been added to the basic equations.  Level 3: Majority of the model equations are empirical  Improving accuracy  Reducing complexity in calculation.  Although more accurate, LEVEL 2 and 3 models are still insufficient to achieve good agreement with experimental data for the deep submicron devices.

20 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 20 Parasitic Capacitances  SPICE models use separate sets of equations in cut-off, linear, and saturation modes to calculate the device parasitic capacitances. C GB C GS C GD  Gate Capacitances: SPICE uses a simple model that represents the charge storage effect by three nonlinear two-terminal capacitors: C GB, C GS, and C GD (please see chapter 2 for the detail) TOXWL LD  Required geometry information: gate oxide thickness (TOX), channel width (W), channel length (L), and the lateral diffusion (LD).

21 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 21 Parasitic Capacitances (2)  Junction Capacitance: SPICE uses the simple pn-junction model to simulate the parasitic capacitances of the source and drain diffusion regions. where AS and AD are the source and the drain areas; PS and PD are the source and the drain perimeters, respectively

22 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 22 Parasitic Capacitances (3) CJ  C j is the zero-bias depletion capacitance per unit area at the bottom plate of the drain or the source diffusion region. (CJ in SPICE) CJSW  C jsw is the zero-bias depletion capacitance per unit length at the side-wall plate. (CJSW) MJMJSW  M j and M jsw are the junction degrading coefficients of the bottom and side-wall plates, respectively. (MJ, MJSW)  0.5 for abrupt juction and 0.33 for linearly graded junction  0 PB PHPPBSW   0 is the built-in junction potential which is actually a function of the doping densities (PB for bottom plate and PHP (MOS) or PBSW (BSIM) for side walls)

23 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 23 Example: NMOS I-V Characteristics * mosiv.sp *------------------------------------------------ * Parameters and models *------------------------------------------------.include '../models/tsmc180/models.sp'.temp 70.option post *------------------------------------------------ * Simulation netlist *------------------------------------------------*nmos Vgsggnd0 Vdsdgnd0 M1dggndgndNMOSW=0.36uL=0.18u *------------------------------------------------ * Stimulus *------------------------------------------------.dc Vds 0 1.8 0.05 SWEEP Vgs 0 1.8 0.3.end V gs V ds I ds 4/2

24 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 24 Example: I-V Characteristics

25 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 25 Example: Inverter Transient Analysis inv.spinv.sp * Parameters and models *------------------------------------------------.param SUPPLY=1.8.option scale=90n.include '../models/tsmc180/models.sp'.temp 70.option post * Simulation netlist *------------------------------------------------ Vddvddgnd'SUPPLY' VinagndPULSE0 'SUPPLY' 50ps 0ps 0ps 100ps 200ps M1yagndgndNMOSW=4L=2 + AS=20 PS=18 AD=20 PD=18 M2yavddvddPMOSW=8L=2 + AS=40 PS=26 AD=40 PD=26 * Stimulus *------------------------------------------------.tran 1ps 200ps.end a y 4/2 8/2 **Unloaded inverter**

26 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 26 Example: Inverter Transient Results Overshoot Very fast edges

27 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 27 Subcircuits  Common elements can be declared as subcircuits  SPICE Decks are easier to read and maintain..subckt inv a y N=4 P=8 M1 y a gnd gnd NMOS W='N' L=2 + AS='N*5' PS='2*N+10' AD='N*5' PD='2*N+10' M2 y a vdd vdd PMOS W='P' L=2 + AS='P*5' PS='2*P+10' AD='P*5' PD='2*P+10'.ends  Ex: Fanout-of-4 Inverter Delay  Reuse inv  Shaping  Loading

28 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 28 Example: FO4 Inverter Delay * fo4.sp * Parameters and models *----------------------------------------------------------------------.param SUPPLY=1.8.param H=4.option scale=90n.include '../models/tsmc180/models.sp'.temp 70.option post * Subcircuits *----------------------------------------------------------------------.global vdd gnd.include '../lib/inv.sp' * Simulation netlist *---------------------------------------------------------------------- Vddvddgnd'SUPPLY' VinagndPULSE0 'SUPPLY' 0ps 100ps 100ps 500ps 1000ps X1abinv * shape input waveform X2bcinvM='H' * reshape input waveform

29 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 29 Example: FO4 Inverter Delay (2) X3cdinvM='H**2' * device under test X4deinvM='H**3' * load x5efinvM='H**4' * load on load * Stimulus *----------------------------------------------------------------------.tran 1ps 1000ps.measure tpdr* rising prop delay + TRIG v(c)VAL='SUPPLY/2' FALL=1 + TARG v(d) VAL='SUPPLY/2' RISE=1.measure tpdf* falling prop delay + TRIG v(c) VAL='SUPPLY/2' RISE=1 + TARG v(d) VAL='SUPPLY/2' FALL=1.measure tpd param='(tpdr+tpdf)/2'* average prop delay.measure trise* rise time +TRIG v(d)VAL='0.2*SUPPLY' RISE=1 +TARG v(d)VAL='0.8*SUPPLY' RISE=1.measure tfall* fall time +TRIG v(d)VAL='0.8*SUPPLY' FALL=1 +TARG v(d)VAL='0.2*SUPPLY' FALL=1.end

30 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 30 Example: FO4 Inverter Delay Results

31 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 31 Device Characterization  Modern SPICE models are so complicated that the designer cannot easily read key performance characteristics from the model files.  A more convenient approach is to run a set of simulations and then extract parameters and other interesting data, e.g., I-V characteristics, threshold voltage, effective resistance and capacitance.  Various methods to find these parameters and the required simulations are described in the literature.

32 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 32 Device Characteristics Comparison

33 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 33 Pitfalls and Fallacies  Failing to estimate diffusion and interconnect parasitics in simulations  Diffusion capacitance can account for more than 50% of the delay of a high fan-in, low fanout gate. Make sure that the area and perimeter of the source and drain are included in the simulation.  RC delay of the long wires dominate the path delay but it is difficult to estimate.  Good models describe not only the circuit but also the input edge rates, the output loading, and parasitics such as diffusion capacitance and interconnect.  Gate delay is strongly dependent on the rise/fall time of the input and even more strongly on the output loading

34 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 34 Pitfalls and Fallicies (2)  SPICE is prone to Garbage in, Garbage out! So do not blindly trust the results from SPICE.  Failing to account for hidden scale factors  Identifying incorrect critical path  Choosing inappropriate transistor sizes  Compare results of a design with carefully selected transistor sizes to a convention design with poorly selected sizes.  Do not use SPICE in place of thinking  Do not use SPICE too much. Circuit simulation should be guided by analysis

35 B.Supmonchai 2102-545 Digital ICs SPICE Simulations 35 Pitfalls and Fallacies (3)  Rule of Thumbs: “Assume SPICE decks are buggy until proven otherwise.”  If the simulation does not agree with your expectations, look closely for errors or inadequate modeling in the deck.  Motto: Check and Recheck!


Download ppt "Tutorial I Circuit Simulation Boonchuay Supmonchai Integrated Design Application Research (IDAR) Laboratory June 24, 2005."

Similar presentations


Ads by Google