Download presentation
Presentation is loading. Please wait.
Published byErnest Horton Modified over 9 years ago
1
Particle Spectra at AGS, SPS and RHIC Dieter Röhrich Fysisk institutt, Universitetet i Bergen Similarities and differences Rapidity distributions –net protons –produced particles Transverse mass spectra Hydrodynamics
2
Proton rapidity distribution AGS energies – centrality dependence B. Back et al., E917 Collaboration. Phys. Rev. Lett. 86 (2001) 1970
3
Proton rapidity distribution AGS energies, central collisions - energy dependence B. Back et al., E917 Collaboration. Phys. Rev. Lett. 86 (2001) 1970
4
F. Videbæk, nucl-ex/0106017 Stopping Rapidity shift - energy dependence
5
Net proton rapidity distribution – centrality dependence SPS, 158 GeV/nucl., NA49 RHIC, s NN = 130 GeV, STAR, BRAHMS N. Xu, QM2001
6
Proton and antiproton rapidity distributions SPS, 158 GeV/nucl., NA49
7
Antiproton/proton ratio – rapidity distribution SPS, 158 GeV/nucl., NA49 RHIC, s NN = 130 GeV, BRAHMS
8
Antiproton/proton ratio – centrality dependence SPS, 158 GeV/nucl., NA49 RHIC, s NN = 130 GeV, BRAHMS
9
Rapidity distributions AGS, 10.8 AGeV + = - K + broader than K - p N. Herrmann, J. P. Wessels and T. Wienold, Ann. Rev. Nucl. Part. Sci. 49 (1999) 581, and references therein
10
Pion rapidity distribution Comparison + and - –SPS, central Pb+Pb, 158 GeV/nucl. NA49 Same widths for + and -
11
Kaon rapidity distribution Comparison K + and K - –SPS, central Pb+Pb, 40 GeV/nucl. NA49 Different widths for K + and K -
12
-rapidity distribution ++ Comparison + and - –SPS, central Pb+Pb, 158 GeV/nucl. NA49 -- Different widths for + and - A. Billmeier, PhD thesis, 2001; R. Barton, J. Phys. G27 (2001) 367
13
Rapidity distributions Suddenly hadronizing QGP-fireball + remaining internal longitudinal flow of colliding quarks J. Letessier, J. Rafelski, hep-ph/0106151 = 1.22 K+ = 1.25 ( K- = 1.17) SPS NA49
14
Transverse momentum spectra Inv. CS 1/m T dN/dm T (a.u.) X.-N. Wang, QM01 Hard component: next session Soft component: Transverse mass spectra fit function: 1/m T dN/dm T ~ exp(-m T /T) fit range: : p T ~.3 – 1 GeV/c heavier hadrons: p T 1.5–2 GeV/c
15
Transverse mass spectra Histograms: RQMD; fit: 1/m T dN/dm T ~ exp(-m T /T) Comparison K + and K - –SPS, NA44
16
Transverse mass spectra Central Pb+Pb collisions, inverse slopes: = 305 ± 25 MeV, = 287 ± 30 MeV; Similar spectra for particle/antiparticle Comparison + and - –SPS, Pb+Pb, 158 GeV/nucl., different centralities WA97
17
Transverse mass spectra Identical slope parameters Indication of deviations from single slope fit at low and high m T Comparison and RHIC, central Au+Au (14%) STAR e (-mt/T) x T=352+-7 MeV No feed-down correction
18
Centrality dependence of transverse mass spectra (1) SPS, 158 GeV/nucl., WA97: RHIC, STAR: - + No dependence STAR, submitted to Phys. Rev. Lett
19
Centrality dependence of transverse mass spectra (2) RHIC, Au+Au STAR: - RHIC, Au+A u STAR: p Slight dependence Strong dependence J.W. Harris, QM01
20
Inverse slope parameter – p+p vs Pb+Pb SPS, p+p SPS, central Pb+Pb NA49; A.M. Rossi, Nucl. Phys. B84 (1975) 269
21
Inverse slope parameter vs particle mass (1) RHIC, central Au+Au K p STAR data: C. Roy, this conference
22
Inverse slope parameter vs particle mass (2) Comparison RHIC (central Au+Au) and SPS (central Pb+Pb) K p d J/ STAR data: C. Roy, this conference
23
Inverse slope parameter vs sqrt(s) - + NA49, STAR Central Au+Au(Pb+Pb) p+p Nucl.Phys. A661(1999)506 Phys.Rev.Lett B491(2000)59 Nucl.Phys. B203(1982)27
24
Sudden breakup of QGP-fireball Thermal freeze-out conditions = chemical freeze-out SPS, central Pb+Pb, WA97 data J. Rafelski, G. Torrieri, J. Letessier, hep-ph/0104132 T fo,global 145 MeV v 0.52c
25
Hydrodynamics motivated m T fit (1) SPS, central Pb+Pb; H. Appelshaeuser (NA49), Eur. Phys. J. C2 (1998) 661; B. Tomasik, U. Wiedemann, U.W. Heinz, nucl th/9907096 T fo 100 MeV 0.55c Correlate - transverse mass spectrum and - - Bose- Einstein correlations 2 contour plots for the fits of the single particle m T - spectrum and of the Cartesian HBT radii
26
Hydrodynamics motivated m T fit (2) RHIC, central Au+Au; STAR S. Margetis, ThermalFest, 2001; P. Jones, this conference R s E.Schnedermann et al, PRC48 (1993) 2462 flow profile used: r = s (r/R) 0.5 Shape of the m T spectrum depends on particle mass, m T - range, flow profile: where and m T - m 0 [GeV/c 2 ] 1/m T dN/dm T (a.u.) STAR Preliminary -- K-K- p solid : used in fit
27
Hydrodynamics motivated m T fit (3) RHIC, central Au+Au; STAR S. Margetis, ThermalFest, 2001; P. Jones, this conference K-K- p -- [c] T th [GeV] At chi square minimum T th = 0.13 [GeV] = 0.52 [c] 0 0.4 Strong radial flow at RHIC ß r (RHIC) = 0.52c T fo (RHIC) = 0.13 GeV 2 map (contour plot for 95.5%CL) 0 0.4
28
Hydrodynamics motivated m T fit (4) RHIC, central Au+Au, -K-p; PHENIX J. Buward-Hoy, ThermalFest, 2001 1/m t dN/dm t = A f( ) d m T K 1 ( m T /T fo cosh ) I 0 ( p T /T fo sinh ) linear velocity profile: where radius r = r/R, particle density distribution: t()t() 1 f( ) PHENIX Preliminary T fo ~ 125 - 83 MeV ~ 104 MeV t ~ 0.6 - 0.8 ~ 0.7 ~ 0.4 - 0.6 ~ 0.5
29
Hydro + Cascade model SPS, RHIC, central Pb+Pb (Au+Au) D. Teaney, J. Lauret, E.V. Shuryak, nucl-th/0104041 RHIC, central Au+Au; PHENIX J. Buward-Hoy, ThermalFest, 2001 , K T fo ~ 135 MeV ~ 0.55 nucleons T fo ~ 120 MeV ~ 0.6
30
Summary Variety of shapes of rapidity distributions Complex transverse mass spectra Hydrodynamics –Strong radial flow t 0.5-0.7c –Sudden QGP break up model: T global 145 MeV (SPS) –Hydro m T -fits: T fo, thermal 100-130 MeV
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.