Presentation is loading. Please wait.

Presentation is loading. Please wait.

Super-Arrhenius behavior of the structural relaxation times Viscosity measurements under high pressure Thermodynamical scaling Marian Paluch Institute.

Similar presentations


Presentation on theme: "Super-Arrhenius behavior of the structural relaxation times Viscosity measurements under high pressure Thermodynamical scaling Marian Paluch Institute."— Presentation transcript:

1 Super-Arrhenius behavior of the structural relaxation times Viscosity measurements under high pressure Thermodynamical scaling Marian Paluch Institute of Physics Silesian University Katowice, POLAND

2 Marian PaluchSilesian University 1:3:5-tri-  -naphthylbenzene; D. J. Plazek and Magill, J. Chem. Phys. The Arrhenius law: Activation energy: Is the super-Arrhenius behavior near Tg at ambient pressure governed primarily by the decreasing volume, the decreasing temperature, or both ?

3 Marian PaluchSilesian University “unambiguously that it is temperature, and not density, that is the overwhelmingly dominant control variable”; „This suggest that theories which focus on thermal effects and totally ignore density variations can be appropriate” (Ferrer, et al., 1999) “relaxation processes arise from molecular motions that are driven by temporal fluctuations in thermal energy … not a time-averaged quantity such as free volume” (Williams, 1997) Prevailing viewpoint:

4 Marian Paluch Temperature dominatedVolume dominated T=T 1 T=T 2 T=T 3 Log(  ) T 1 < T 2 < T 3 Volume isobar isotherm Volume Log(  ) isotherm isobar

5 Marian PaluchSilesian University F[Hz], C[pF], R[  ] Impedance Analyzer Thermal bath T[°C] P[bar] Pressure meter Hydraulic press High pressure chamber Tensometric sensor Valve 10 -2 Hz – 10 7 Hz Schematic illustration of the high pressure dielectric set-up

6 PDE T g =294 K Dielectric measurements M. Paluch, R. Casalini, C. M. Roland, Phys. Rev. B 2002 Marian PaluchSilesian University

7 Schematic illustration of the light scattering technique used in high pressure measurements Thermal bath T[°C] Membrane compressor Laser P [bar] Avalanch diode detector Valve Correlator Manometer sample High pressure chamber Marian PaluchSilesian University

8 Dynamic light scattering measurements A. Patkowski, M. Paluch, H. Kriegs, J. Chem Phys. 2002 Marian PaluchSilesian University

9 Marian PaluchSilesian University Capillary Diamond-anvil cell Centrifuge Diamond-anvil cell Falling ball Rolling ball Falling body

10 Marian PaluchSilesian University metal sphere 0.05 mm diameter 0.25 mm 0.5 mm diamond stainless steel gasket ruby chip

11 Frequency counter Laser Mirror F=  2 R  Marian PaluchSilesian University The centrifugal force viscometer

12 Tait equation: M. Paluch, R. Casalini, A. Best, A. Patkowski, J. Chem Phys. 2002 PVT measurements: Marian PaluchSilesian University

13 M. Paluch, R. Casalini, C. M. Roland, Phys. Rev. B 2002 Volume dependence of the  - relaxation times Marian PaluchSilesian University

14 isochronal expansivity :  P =  V  1 (  V/  T) P isobaric expansivity :   =  V  1 (  V/  T)  (Ferrer, Lawrence, Demirjian, Kivelson, Alba-Simonesco & Tarjus, 1998 ) First approach: Expansion coefficients using >>1 ~ 1 comparable 0 P T dominate V dominate            Marian PaluchSilesian University

15 PDEPPGE 1bar1.251.67 2 kbar1.432.4 M. Paluch, R. Casalini, C. M. Roland, Phys. Rev. B 2002 Marian PaluchSilesian University

16 Volume  Temperature (steric constraints) (thermal fluctuations) 0  E V /E P  1 M. Naoki and M. Matsushita, Chem. Soc. Jap. 56, 2396 (1983) Second approach: Activation energies activation energy at constant volume: activation energy at constant pressure: Marian PaluchSilesian University

17 M. Paluch, R. Casalini, C. M. Roland, Phys. Rev. B 2002 Marian PaluchSilesian University

18 Marian PaluchSilesian University Name TgTg E V /E P BMPC2430.39 BMMPC2630.41 Salol2200.43 KDE3130.49 PDE2490.53 o-terphenyl2440.55 2 PMPS2460.46 PTMS1980.55 polystyrene3730.64 DGEBA3350.6 polyvinylacetate3110.6 PPGE2580.63 polyvinylmethylether2510.69 1,2-polybutadiene2530.70 polypropyleneglycol 400276(0.78)* propylene glycol trimer 0.77 sorbitol2730.87 propylene glycol0.89 glycerol 4 1890.94 Small molecules Polymers H-bonded liquids Temperature dominant control variable for H-bonded materials density and thermal energy have nearly the same effect on molecular dynamics weaker effect of density due to intramolecular bonding

19 R. Casalini, and C. M. Roland J. Chem. Phys. 119, 4052 (2003) Marian PaluchSilesian University

20 Marian PaluchSilesian University TV  scaling Parameter  is material constant, and independent on P, T and V The scaling quantity TV -  can be followed from the generalized LJ potential with its modiefied repulsive and attractive parts proportional to r -3  and r -3  /2 - for OTP PMPS 2PG PDE

21 At T=T g  Marian PaluchSilesian University

22 Marian PaluchSilesian University For polymer Boyer-Spencer rule:  P T g =0.2

23 Marian PaluchSilesian University

24 Marian PaluchSilesian University BMMPC PTMPS PDE

25 Marian PaluchSilesian University


Download ppt "Super-Arrhenius behavior of the structural relaxation times Viscosity measurements under high pressure Thermodynamical scaling Marian Paluch Institute."

Similar presentations


Ads by Google