Download presentation
Presentation is loading. Please wait.
Published byJesse Lucas Modified over 11 years ago
1
Department of Computer Science and Engineering Defining and Computing Curve-skeletons with Medial Geodesic Function Tamal K. Dey and Jian Sun The Ohio State University
2
2/16 Department of Computer Science and Engineering 1D representation of 3D shapes, called curve-skeleton, useful in many application Geometric modeling, computer vision, data analysis, etc Reduce dimensionality Build simpler algorithms Desirable properties [Cornea et al. 05] centered, preserving topology, stable, etc Issues No formal definition enjoying most of the desirable properties Existing algorithms often application specific Motivation
3
3/16 Department of Computer Science and Engineering Give a mathematical definition of curve-skeletons for 3D objects bounded by connected compact surfaces Enjoy most of the desirable properties Give an approximation algorithm to extract such curve- skeletons Practically plausible Contributions
4
4/16 Department of Computer Science and Engineering Roadmap
5
5/16 Department of Computer Science and Engineering Medial axis: set of centers of maximal inscribed balls The stratified structure [Giblin-Kimia04]: g enerically, the medial axis of a surface consists of five types of points based on the number of tangential contacts. M 2 : inscribed ball with two contacts, form sheets M 3 : inscribed ball with three contacts, form curves Others: Medial axis
6
6/16 Department of Computer Science and Engineering Medial geodesic function (MGF)
7
7/16 Department of Computer Science and Engineering Properties of MGF Property 1 (proved): f is continuous everywhere and smooth almost everywhere. The singularity of f has measure zero in M 2. Property 2 (observed): There is no local minimum of f in M 2. Property 3 (observed): At each singular point x of f there are more than one shortest geodesic paths between a x and b x.
8
8/16 Department of Computer Science and Engineering Defining curve-skeletons Sk 2 =Sk Å M 2 : the set of singular points of MGF or points with negative divergence w.r.t. r f Sk 3 =Sk Å M 3 : A point of other three types is on the curve-skeleton if it is the limit point of Sk 2 [ Sk 3
9
9/16 Department of Computer Science and Engineering Defining curve-skeletons Sk 2 =Sk Å M 2 : set of singular points of MGF or points with negative divergence w.r.t. r f Sk 3 =Sk Å M 3 : extending the view of divergence A point of other three types is on the curve-skeleton if it is the limit point of Sk 2 [ Sk 3 Sk=Cl(Sk 2 [ Sk 3 )
10
10/16 Department of Computer Science and Engineering Computing curve-skeletons MA approximation [Dey-Zhao03] : subset of Voronoi facets MGF approximation: f(F) and (F) Marking: E is marked if (F) ² n < for all incident Voronoi facets Erosion: proceed in collapsing manner and guided by MGF
11
11/16 Department of Computer Science and Engineering Examples
12
12/16 Department of Computer Science and Engineering Properties of curve-skeletons Thin (1D curve) Centered Homotopy equivalent Junction detective Stable Prop1: set of singular points of MGF is of measure zero in M 2 Medial axis is in the middle of a shape Prop3: more than one shortest geodesic paths between its contact points Medial axis homotopy equivalent to the original shape Curve-skeleton homotopy equivalent to the medial axis
13
13/16 Department of Computer Science and Engineering Effect of
14
14/16 Department of Computer Science and Engineering Shape eccentricity and computing tubular regions Eccentricity: e(E)=g(E) / c(E) Compute tubular regions classify skeleton edges and mesh faces based on a given threshold depth first search
15
15/16 Department of Computer Science and Engineering Shape eccentricity and computing tubular regions Eccentricity: e(E)=g(E) / c(E)
16
16/16 Department of Computer Science and Engineering Timing
17
Department of Computer Science and Engineering Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.