Presentation is loading. Please wait.

Presentation is loading. Please wait.

HNO 3, HCl, HBr, HI, H 2 SO 4 and HClO 4 are the strong acids. Strong and Weak Acids/Bases The strength of an acid (or base) is determined by the amount.

Similar presentations


Presentation on theme: "HNO 3, HCl, HBr, HI, H 2 SO 4 and HClO 4 are the strong acids. Strong and Weak Acids/Bases The strength of an acid (or base) is determined by the amount."— Presentation transcript:

1 HNO 3, HCl, HBr, HI, H 2 SO 4 and HClO 4 are the strong acids. Strong and Weak Acids/Bases The strength of an acid (or base) is determined by the amount of IONIZATION.

2 Generally divide acids and bases into STRONG or WEAK ones.Generally divide acids and bases into STRONG or WEAK ones. STRONG ACID: HNO 3 (aq) + H 2 O (l)  H 3 O + (aq) + NO 3 - (aq) HNO 3 is about 100% ionized in water. Strong and Weak Acids/Bases

3 Weak acids are much less than 100% ionized in water.Weak acids are much less than 100% ionized in water. *One of the best known is acetic acid = CH 3 CO 2 H *One of the best known is acetic acid = CH 3 CO 2 H Strong and Weak Acids/Bases

4 Strong Base: 100% dissociated in water.Strong Base: 100% dissociated in water. NaOH (aq)  Na + (aq) + OH - (aq) NaOH (aq)  Na + (aq) + OH - (aq) Other common strong bases include KOH and Ca(OH) 2. CaO (lime) + H 2 O --> Ca(OH) 2 (slaked lime) Ca(OH) 2 (slaked lime) CaO Strong and Weak Acids/Bases Strong bases are the group I hydroxides Calcium, strontium, and barium hydroxides are strong, but only soluble in water to 0.01 M

5 Weak base: less than 100% ionized in waterWeak base: less than 100% ionized in water One of the best known weak bases is ammonia NH 3 (aq) + H 2 O (l) ↔ NH 4 + (aq) + OH - (aq) Strong and Weak Acids/Bases

6 Weak Bases

7 Equilibria Involving Weak Acids and Bases Consider acetic acid, HC 2 H 3 O 2 (HOAc) HC 2 H 3 O 2 + H 2 O ↔ H 3 O + + C 2 H 3 O 2 - Acid Conj. base Acid Conj. base (K is designated K a for ACID) K gives the ratio of ions (split up) to molecules (don’t split up)

8 Ionization Constants for Acids/Bases Acids ConjugateBases Increase strength

9 Equilibrium Constants for Weak Acids Weak acid has K a < 1 Leads to small [H 3 O + ] and a pH of 2 - 7

10 Equilibria Involving A Weak Acid You have 1.00 M HOAc. Calc. the equilibrium concs. of HOAc, H 3 O +, OAc -, and the pH. Step 1. Define equilibrium concs. in ICE table. [HOAc][H 3 O + ][OAc - ] [HOAc][H 3 O + ][OAc - ]initialchangeequilib 1.0000 -x+x+x 1.00-xxx

11 Step 2. Write K a expression You have 1.00 M HOAc. Calc. the equilibrium concs. of HOAc, H 3 O +, OAc -, and the pH. This is a quadratic. Solve using quadratic formula. or you can make an approximation if x is very small! Check does [acid] initial /Ka >1000!!!! (Rule of thumb: 10 -5 or smaller is ok) or you can make an approximation if x is very small! Check does [acid] initial /Ka >1000!!!! (Rule of thumb: 10 -5 or smaller is ok) Equilibria Involving A Weak Acid

12 Step 3. Solve K a expression You have 1.00 M HOAc. Calc. the equilibrium concs. of HOAc, H 3 O +, OAc -, and the pH. First assume x is very small because K a is so small. Now we can more easily solve this approximate expression.

13 Step 3. Solve K a approximate expression You have 1.00 M HOAc. Calc. the equilibrium concs. of HOAc, H 3 O +, OAc -, and the pH. x = [ H 3 O + ] = [ OAc - ] = 4.2 x 10 -3 M pH = - log [ H 3 O + ] = -log (4.2 x 10 -3 ) = 2.37 Equilibria Involving A Weak Acid

14 Calculate the pH of a 0.0010 M solution of formic acid, HCO 2 H. HCO 2 H + H 2 O ↔ HCO 2 - + H 3 O + HCO 2 H + H 2 O ↔ HCO 2 - + H 3 O + K a = 1.8 x 10 -4 Approximate solution [H 3 O + ] = 4.2 x 10 -4 M, pH = 3.37 [H 3 O + ] = 4.2 x 10 -4 M, pH = 3.37 Exact Solution [H 3 O + ] = [HCO 2 - ] = 3.4 x 10 -4 M [H 3 O + ] = [HCO 2 - ] = 3.4 x 10 -4 M [HCO 2 H] = 0.0010 - 3.4 x 10 -4 = 0.0007 M [HCO 2 H] = 0.0010 - 3.4 x 10 -4 = 0.0007 M pH = 3.47 pH = 3.47

15 Equilibrium Constants for Weak Bases Weak base has K b < 1 Leads to small [OH - ] and a pH of 12 - 7

16 Relation of K a, K b, [H 3 O + ] and pH

17 Equilibria Involving A Weak Base You have 0.010 M NH 3. Calc. the pH. NH 3 + H 2 O ↔ NH 4 + + OH - NH 3 + H 2 O ↔ NH 4 + + OH - K b = 1.8 x 10 -5 Step 1. Define equilibrium concs. in ICE table [NH 3 ][NH 4 + ][OH - ] [NH 3 ][NH 4 + ][OH - ]initialchangeequilib 0.01000 -x+x+x 0.010 - xx x

18 Equilibria Involving A Weak Base You have 0.010 M NH 3. Calc. the pH. NH 3 + H 2 O  NH 4 + + OH - NH 3 + H 2 O  NH 4 + + OH - K b = 1.8 x 10 -5 Step 2. Solve the equilibrium expression Assume x is small, so x = [OH - ] = [NH 4 + ] = 4.2 x 10 -4 M x = [OH - ] = [NH 4 + ] = 4.2 x 10 -4 M and [NH 3 ] = 0.010 - 4.2 x 10 -4 ≈ 0.010 M The approximation is valid!

19 Equilibria Involving A Weak Base You have 0.010 M NH 3. Calc. the pH. NH 3 + H 2 O  NH 4 + + OH - NH 3 + H 2 O  NH 4 + + OH - K b = 1.8 x 10 -5 Step 3. Calculate pH [OH - ] = 4.2 x 10 -4 M so pOH = - log [OH - ] = 3.37 Because pH + pOH = 14, pH = 10.63

20 Types of Acid/Base Reactions: Summary

21 F - (aq) + H 2 O (l) OH - (aq) + HF (aq) Weak Bases are weak electrolytes NO 2 - (aq) + H 2 O (l) OH - (aq) + HNO 2 (aq) Conjugate acid-base pairs: The conjugate base of a strong acid has no measurable strength. strongest acidH 3 O + is the strongest acid that can exist in aqueous solution. strongest baseThe OH - ion is the strongest base that can exist in aqueous solution. 15.4

22

23 Strong AcidWeak Acid 15.4

24 percent ionization = Ionized acid concentration at equilibrium Initial concentration of acid x 100% For a monoprotic acid HA Percent ionization = [H + ] [HA] 0 x 100% [HA] 0 = initial concentration 15.5

25 15.7 Ionization Constants of Conjugate Acid-Base Pairs HA (aq) H + (aq) + A - (aq) A - (aq) + H 2 O (l) OH - (aq) + HA (aq) KaKa KbKb H 2 O (l) H + (aq) + OH - (aq) KwKw K a K b = K w Weak Acid and Its Conjugate Base Ka =Ka = KwKw KbKb Kb =Kb = KwKw KaKa

26 Molecular Structure and Acid Strength H X H + + X - The stronger the bond The weaker the acid HF << HCl < HBr < HI 15.9 Bond strength Polarity

27 Molecular Structure and Acid Strength Z O HZ O-O- + H + -- ++ The O-H bond will be more polar and easier to break if: Z is very electronegative or Z is in a high oxidation state 15.9

28 Molecular Structure and Acid Strength 1. Oxoacids having different central atoms (Z) that are from the same group and that have the same oxidation number. Acid strength increases with increasing electronegativity of Z H O Cl O O H O Br O O Cl is more electronegative than Br HClO 3 > HBrO 3 15.9

29 Molecular Structure and Acid Strength 2. Oxoacids having the same central atom (Z) but different numbers of attached groups. Acid strength increases as the oxidation number of Z increases. HClO 4 > HClO 3 > HClO 2 > HClO 15.9

30 Acid-Base Properties of Salts Neutral Solutions: Salts containing an alkali metal or alkaline earth metal ion (except Be 2+ ) and the conjugate base of a strong acid (e.g. Cl -, Br -, and NO 3 - ). NaCl (s) Na + (aq) + Cl - (aq) H2OH2O Basic Solutions: Salts derived from a strong base and a weak acid. NaCH 3 COO (s) Na + (aq) + CH 3 COO - (aq) H2OH2O CH 3 COO - (aq) + H 2 O (l) CH 3 COOH (aq) + OH - (aq) 15.10

31 Acid-Base Properties of Salts Acid Solutions: Salts derived from a strong acid and a weak base. NH 4 Cl (s) NH 4 + (aq) + Cl - (aq) H2OH2O NH 4 + (aq) NH 3 (aq) + H + (aq) Salts with small, highly charged metal cations (e.g. Al 3+, Cr 3+, and Be 2+ ) and the conjugate base of a strong acid. Al(H 2 O) 6 (aq) Al(OH)(H 2 O) 5 (aq) + H + (aq) 3+2+ 15.10

32 Acid-Base Properties of Salts Solutions in which both the cation and the anion hydrolyze: K b for the anion > K a for the cation, solution will be basic K b for the anion < K a for the cation, solution will be acidic K b for the anion  K a for the cation, solution will be neutral 15.10


Download ppt "HNO 3, HCl, HBr, HI, H 2 SO 4 and HClO 4 are the strong acids. Strong and Weak Acids/Bases The strength of an acid (or base) is determined by the amount."

Similar presentations


Ads by Google