Presentation is loading. Please wait.

Presentation is loading. Please wait.

Experimental Hadron Physics in Poland

Similar presentations


Presentation on theme: "Experimental Hadron Physics in Poland"— Presentation transcript:

1 Experimental Hadron Physics in Poland
status ( ) and perspectives polish contributions and achievements fields of interest: Nuclear matter at extreme condition (T,) LQCD [Bowman etal ‘02] Instanto nmodel [Diakonov+Petrov ’85,Shuryak] 1 fm r Chiral Symmetry and mass generation 1 fm rN Interactions and structure of hadrons

2 Physics experiments Polish Groups
Interactions and structure of hadrons COSY: COSY11,GEM, ANKE, WASA SATURN: DISTO GSI : PANDA JU-I, US, INS, US , INP, UW JU-II JU-I/II, INS, US Hadron properties in nuclear matter GSI: KAOS, FOPI, HADES JU-II, UW-I Properties of hadronic matter at extreme conditions GSI/SIS : FOPI, CBM CERN/SPS : NA49 RHIC: PHOBOS, BRAMS,STAR LHC: ALICE UW-I, JUIII,US,INS IPSA, INP, INS,WIT INP, JUIII, WIT INP,WIT, UW-II JU (I-III)– Jagiellonian University (Krakow) WIT - Warsaw Institue of Technology (Warsaw) US - University of Silesia (Katowice) UW (I,II) - Warsaw University (Warsaw) INS - Institute of Nuclear Studies (Warsaw) INP - Institute of Nuclear Physics (Krakow) IPSA - Institute of Physics Świetokrzyska Academy (Kielce)

3 COoler SYnchrotron COSY
WASA COSY to jest Cooler Synchrotron, ktory  przyspiesza i akumuluje protony i deuterony do pedu okolo 3600 MeV/c. Wiazka moze byc spolaryzowana. Polaryzacja jest bardzo dobra. W granicach 75% dla wiazki protonowej. Glownym atutem COSY jest mala emitancja i rozmycie pedowe wiazki, ktore osiaga sie  stosujac chlodzenie elektronowe dla malych pedowi stochastyczne dla wiekszych. Eksperymenty zainstalowane sa na wiazkach zewnetrznych ale takze wenatrz jonowodu. Polacy biora udzial w nastepujacych grupach: PISA ( spokesperson B. Kamys ) juz chyba zakonczyli pomiary. ANKE,GEM,MOMO  ( W tych grupach bierze udzial Andrzej Magiera ) TOF ( wiem tylko o jednym fizyku z Warszawy, ktory nazwywa sie Zupranski). polarised and unpolarised proton and deuteron beams stochastic and electron cooling momentum range: 600 – 3700 MeV/c meson production up to (1020)

4 Meson production close to threshold
only s-wave partial waves contribute to Final State 1S0 pp FSI known pX interactions measured via  (Q=s1/2 – s12thresh ) and Dalitz plot X: , ' , , K- , K+ , ,   Badania na COSY robimy mierzac calkowite i rozniczkowe przekroje czynne przy progu, gdzie przestrzen fazowa gwaltownie rosnie i jej objetosc zmienia sie o kilka rzedow na obrzarze kilku MeV. Do tego wazna jest precyzyja. Opis kilkuzdaniowy tego rysunku znajdziesz w zalaczonym wystapieniu(J.Phys.G28(2002)1777) CELSIUS Saturn

5 JU Since 1987: 12 members. Construction of TOF walls, Drift chambers, beam monitors
US: 3 members COSY-11: J. Smyrski et al., NIM A 541 (2005) 574.

6 |M|2 ~ |M0|2 |Mpp|2 |Mp1η|2 |Mp2η|2
/' production |M|2 ~ |M0|2 |Mpp|2 |Mp1η|2 |Mp2η|2 |M|2 ~ |M0 |2 |Mpp|2 σ = dVps |M|2 pp pp η at Q=15.5 MeV COSY11 Przykladowe widma masy brakujacej z pomiarow z duza statystyka dla ety i  ety-prime strong p FSI (S11 (1535)) weak p' FSI bin size is experimental resolution !

7 Strangeness production:
COSY: PLB 635 (2006) 23 K+/K- ratio important for: in medium kaon properties- (subthreshold kaon production) K+K- production : / ratio OZI rules in pp collisions pp FSI DISTO[1] Wynik dotyczacy pomiarow pp-->ppK+K-. To mozna powiazac z pomiarami Disto(takze Polacy), oraz z pomiarami w GSI (ktore znasz lepiej niz ja). Tu warto podkreslic komplementarnosc pomiarow w GSI i COSY. Poprzez porownanie  przekrojow czynnych na produkcje kaonow w reakcji pp i pC etc. mozna bylo wywnioskowac zmiane masy kaonow w materii jadrowej i wydedukowac, ze dla K+ potencjal jest odpychajacy a dla K- przyciagajacy. Krotki opis z uwzglednieniem roli COSY znajdziesz we wspomnianym juz wykladzie (jphysG28.ps) dolaczonym do tego a. /  ratio enhanced but not so much as in pp annihilation at rest non –resonant contribution consistent with space distribution

8 Test of CP symmetries in flavour conserving decays: +-e+e-
charge symmetries of strong interactions (u, d quarks mass difference) via / mixing in ' decays and dd0 exotics – glueballs, pentaquarks polski wklad: Forward detector upgrade, calibration of straw tubes, fiber detectors Polish groups: UW, JU, US, INP, INS ECAL, Forward-Detecto L=1032 cm−2s−1

9 Storage and Cooler Rings
GSI-FAIR MoU signed by Poland in 2005 SIS 100 U GeV/u ions/s protons 30 GeV x1013/s 2T (4T/s) magnets UNILAC SIS FRS ESR SIS 100/300 HESR Super NESR CR p Target 18 SIS 300 U GeV/u s 6T (1T/s) magnets CBM PANDA Secondary Beams Radioactive beams up to 1.5 GeV/u Antiprotons up to 30 GeV Storage and Cooler Rings Radioactive beams e-A collider HESR: Antiprotons GeV FOPI, HADES, KAOS

10 PANDA @ FAIR Polish groups: Charmonium spectroscopy (cc)
p production rate 2x107/sec Pbeam = GeV/c Nstored = 1011 p Internal target p/p ~ 10-5 (electron cooling) Charmonium spectroscopy (cc) "Glue" bound states: Hybrids(ccg) and glueballs (ggg)) D mesons in nuclear matter Hypernuclei spectroscopy Target Target spectrometer Polish groups: R&D: ECAL (UNS) MDC, DAQ, FEE (JU) Forward Spectrometer coordination Design Studies: (JU) Forward spectrometer Solenoid

11 FOPI/KaOS@ GSI Kaons in medium
JU: since '87 5-7 members Zero Degree Hodoscope UW: since 1989 6-7 members Participation in construction of TOF Barrel

12 Subthreshold K- production
KaoS wielostopniowe procesy :NN->N, NN->NN , ->K-N , N->K+ calculations with in medium potential describe data : U(K+, 0)= 30 MeV, U(K-, 0)=-70 MeV W. Cassing et. al Nucl. Phys. A 614, 415 (1997).

13 K+ production and nuclear matter EOS
KaoS PRL86(2001)39 K<200 MeV soft EOS C. Fuchs PRL91(2003)152301 NN thres. Soft EOS preferred (precise  K for k production in NN essential! )

14 In-medium hadron properties with HADES @ GSI
Studied via electron momentum reconstruction of e+,e- pairs (penetrating probes) from pp, pA,A, AA excellent electron ID against hadrons (~10-4) Spectrometer with high invariant mass resolution M/M~2% at /, large acceptance and high rate capability. Project launched in Measurement started in 2002 JU since 1995 (~12 members) R&D and construction of Pre-Shower incl. read-out electronic of 20k channels Collaboration More than 100 physicists from Cyprus, Czech Rep., France, Germany, Italy, Poland, Portugal, Russia, Slovakia, Spain

15 measured rates span over 5 orders of magnitude
N p r/ e+ e- e+e- Ne+e- measured rates span over 5 orders of magnitude better description with in-medium spectral functions of  more sensitivity in larger systems (Ar+KCl, Au+Au,..) expected

16 FOPI & HADES future programms (2006-2010)
K- flow sensitive to KN potential (TOF RPC upgrade) Kaon production in pion induced reactions Kaonic bound state in nuclear matter HADES studies of e+,e- sources in pp, dp collisions,  modifications in nucleus, pion induced reactions, studies of e+,e- production in heaviest systems (Au+Au) at top SIS18 energies->inner TOF and DAQ upgrade (EU programme) HADES at 8 AGeV (->CBM experiment)

17 Nuclear matter under extreme conditions
M. Gazdicki Chiral resotoration?

18 NA49: observation of onset of deconfinment?
(Marek ) HORN STEP 30 AGeV

19 Na49 Future: Search for critical point of Strong Interactions
Search for anomalies in fluctuations and flow (v2) in function of system size and energy (s1/2 > 7 GeV) Systematic scan in energy and system size:pp, pA, AA collisions ( AGeV) Letter of intent SPSC for dedicated experiments at SPS in Test run in august Polish groups (data analysis): IPSA, INP, INS,WIT, UW, JU

20 CBM experiment at FAIR Scientific goals: properties of baryon-rich and dense nuclear matter A+A 8-35 AGeV (Au+Au), pp and pA (p<90 GeV) ChS restoration - in medium / at high baryon density open charm (D-mesons) and J/ in medium Strangeness production: K, , ,  event by event fluctuations beam STS magnet RICH TRD TOF ECAL Polish groups: Feasibility studies dieleptons (JU), strangeness (UW), DAQ (US, UW) R&D Silicon Tracking (JU), RPC(UW)

21 RHIC’s Experiments STAR Top Center-of-Mass Energy:
200 GeV/nucleon for Au-Au Luminosity Au-Au: 2 x 1026 cm-2 s-1; p-p : 2 x 1032 cm-2 s-1

22 9 drift chambers & FEE built in JU detector lab
Hadrons ID: p, K,  at: up to 30 GeV/u, with (dp/p) ~ 1% 0 < |y| < < pt < ~ 3GeV/c 9 drift chambers & FEE built in JU detector lab Experimental set up

23 Net protons rapidity density comparison
(highest rapidity measurements not yet completed) 12 7 With increasing energy the nucleus – nucleus collisons are more and more transparent The matter that is created at RHIC differs from anything that has been investigated before (baryon free region) !

24 High pt component of hadron spectra
Nuclear modification factor : Au(100A GeV) + Au(100A GeV) Ratio of the suppression factor Rcp at =0 and =2.2 RCP The evidences for strong nuclear effects Jets energy loss Color Glass condenste ? Large high pt suppression for central collisions as compared to semi-peripheral

25 Au+Au, sNN = 200 GeV 137k silicon sensors ~4 multiplicity coverage
MIT, BNL, Argonne National Laborator, University of Illinois at Chicago, University of Rochester, University of Maryland Poland: INP ( 7 members), Tajwan: National Central University Participation of the Polish Group (since 1992): - contribution to the detector construction (~30% of the total detector cost) - developments of the physics research program and software system 137k silicon sensors ~4 multiplicity coverage excellent low pt Spectrometer Trigger Counter Octagon TOF SpecTrig T0 counter Au+Au, sNN = 200 GeV

26 Particle flow -R dN/d( - R ) = N0 (1 + 2v1cos (- R) + 2v2cos (2(- R)) ) Hydrodynamical models, with the assumed ideal nature of the fluid (no viscosity), reproduce the strength of the flow for central Au+Au for the first time at RHIC energies!

27 Coming Future: AliCE (ATLAS) @ LHC
30 times larger energy as in RHIC Energy desntity  ~15-40 GeV/fm3 >> crit~1 GeV/fm3 Freeze-out out ~ fm3, QGP duration (4-10 fm) ITS TPC TRD TOF PHOS HMPID MUON SPEC. PMD FMD ALICE detector Polish groups: ~20 members INP (TPC analysis), INS WIT (HBT correlations), UW

28 Summary Many interesting physics done so far
(COSY, SATURN, GSI, CERN, RHIC) New exciting possibilities and challenges: short term (<2010): HADES, FOPI: in-medium hadron properties WASA : studies of symmetries of SI NA49future: search for critical point of SI longer term (>2012): PANDA : charmonium physics CBM: studies of compressed baryonic matter LHC : starts tomorrow..

29 back-up slides

30 High pt suppression at forward in d+ Au
Rd+Au RCP BRAHMS: PRL 93 (2004) Initial conditions for high energy collisions are determined by the „wee partons” in the wave functions of the colliding nuclei Color Glass Condensate (CGC) phase of hadronic matter.

31 Laboratory of nuclear matter
g Space Time jet Au p K f L T = 120 MeV e = 0.06 GeV/fm3 T = 230 MeV e = 3 GeV/fm3 200 AGeV "collider" Toneev at al. ,nucl-th/ : 3-fluid hydrodynamics Collision trajectory in e 

32 Strangeness creation KaoS


Download ppt "Experimental Hadron Physics in Poland"

Similar presentations


Ads by Google