Presentation is loading. Please wait.

Presentation is loading. Please wait.

Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,

Similar presentations


Presentation on theme: "Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,"— Presentation transcript:

1 Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest, Univ. Giessen) School of Collective Dynamics in High-Energy Collisions, Berkeley, 19-26 May, 2005

2 Collaborators József Zimányi, KFKI RMKI Budapest Péter Lévai, KFKI Tamás Csörgő, KFKI Berndt Müller, Duke Univ. NC USA Christoph Traxler Gábor Purcsel, KFKI Antal Jakovác, BMGE (TU) Budapest Géza Györgyi, ELTE Budapest Zsolt Schram, DE Debrecen

3 Valence Quark Model of Hadrons 1. Mass formulas (flavor dependence) 2. Spin dependence 3. Alternatives: partons, strings,... Basic cross sections e p : e  = 3 : 2

4 Valence Quark Model of Hadrons Quark masses: M = (u,d) m, (s) m s Quark hypercharges: Y = (u,d) 1/3, (s) -2/3 Naive quark mass formula: M = M - M Y 01 with M = (2m + m ) / 3 and M = m - m ss01 M ≠ 0 breaks SU(3) flavor symmetry 1

5 Valence Quark Model of Hadrons More terms: M = a + bY + c T(T+1) + d Y 2 Test on baryon decuplet masses with last 2 terms linear (like x + y Y)  (3/2, 1): 15c/4 + d = x + y  (1/2,-1): 3c/4 + d = x - y  ( 0,-2): 4d = x - 2y Solution: x = 2c, y = 3c/2 d = -c/4. *

6 Valence Quark Model of Hadrons M = a + bY + c ( T(T+1) - Y / 4 ) 2 Gell-Mann Okubo mass formula: N (qqq: ½, +1) a + b + c / 2  (qqs: 1, 0) a + 2 c  (qqs: 0, 0) a  (qss: ½, -1) a – b + c / 2 Check 3M(  ) + M(  ) = 2M(N) + 2M(  ) : difference 8 MeV/ptl.

7 Valence Quark Model of Hadrons M = a + bY + c ( T(T+1) - Y / 4 ) + d S(S+1) 2 Gürsey - Radicati mass formula: SU(6) quark model: (flavor SU(3), spin SU(2)) 1.quark: [6] = [3,2] 2.meson: (3,2)×(3,2) = (1,1)+(8,1)+(1,3)+(8,3) 3.baryon: 6×6×6 = 20+56+70+70 ( only 56 is color singlet )

8 Valence Quark Model of Hadrons Fit to 56-plet masses: a = 1066.6 MeV, b = -196.1 MeV c = 38.8 MeV, d = 65.3 MeV More success: magnetic moments No hint for formation probability Linear dominance!  additive mass hadronization

9 Quark Recombination 1. (Non)Linear coalescence (Bialas, ZLB) 2. ALCOR (Zimanyi, Levai, Biro) 3. Distributed mass quarks (ZLB) hep-ph/9904501 PLB347:6,1995 PLB472:243,2000 nucl-th/0502060

10 Quark Recombination Linear vs nonlinear coalescence meson[ij] = a q[i] q[j] baryon[ijk] = b q[i] q[j] q[k] With lowest multiplets: quarks are redistributed in a few mesons and baryons # counting all flavors q =  + K + 3N + 2Y + X s =  + K + Y + 2X + 3  coalesced numbers N = C b q 33 qN et cetera

11 Quark Recombination Q = b q q A simple example: q, q  , N, N _ _ _ q = C Q Q + 3C Q =  + 3 N N 3  N 3  ____ N / C * N / C = (  / C ) 3 NN _  (r  ) = (q -  ) ( q -  ) with r = (3C ) / C  N 32/3 _

12 Quark Recombination  (q + q ) / 2 (q q ) _ qq _ small r limit: N = r q / 3(q – q) 33 _ _ _ N = (q – q)/3 + N  = q - 3 N _ _ _ _ Features: N ≠ …q,  ≠ … q q 3 q > q _ RHS LHS _

13 Quark Recombination Note:  ≠  possible due to S ≠ S while s = s Key: b is sensitive to the q – q inbalance! s ratios of ratios and their powers are testable! d(K) = K/K = 1.80 ± 0.2 d(Y) = (Y/Y) / (N/N) = 1.9 ± 0.3 d(X) = (X/X) / (N/N) = 1.89 ± 0.15 d(  ) = (  /  ) / (N/N) = 1.76 ±0.15 CERN SPS data 1/2 1/3

14 Quark Recombination ALCOR: 2Nflavor parameters = Nf che- mical potentials + Nf fugacities this is just not grand canonical, but explicit in the particle numbers.

15 Quark Recombination Distributed mass quarks form hadrons. 1.) assume hadronic wave packet is narrow in relative momentum  p(a) = p(b) = p/2 2.) mass is nearly additive  m = m(a)+m(b) 3.) coalescence convolves phase space densities F(m,p) = dm dm  (m-m -m ) f(m,p/2) f(m,p/2) ∫ aaabbb ∫ 00  The product f(x) f(m-x) is maximal at x = m /2. nucl-th/0502060

16 Quark Recombination ln  (m) = - (a/T) (a/m + m/a ) ½ f(m,p) =  (m) exp ( - E(m,p) / T )

17 Quark Recombination pion

18 Quark Recombination proton

19 Quark Recombination ratio

20 Hadronization dynamics 1.Parton kinetics + recombination (MFBN) 2.Colored molecular dynamics (TBM) 3.Color confinement as 1/density (ZBL) 4.Multpilicative noise in quark matter (JB) 5.Non-extensive Boltzmann equation (BP) PRC59:1620, 1999 JPG27:439, 2001 PRL94:132302, 2005 hep-ph/0503204

21 Colored Molecular Dynamics g

22

23

24 Color confinement as 1/density reaction A + B  C conserved: N + N = N (0), N + N = N (0) AABBCC rate eq.: N = -R ( N - N )(N - N ) CC - +  resulted number: C N (  ) = N N (1-K) / (N -KN ) C + + -- with K = exp(r (N - N )), r = R(t)dt +- ∫

25 Color confinement as 1/density If A and B colored, C not: N (  ) = N (0) = N (0) = N limit: r(N - N )  0, K exp linearized N (  ) = r N / ( 1 + rN ) (r   is required!) 1-dim exp : r =  v/V t ln ( t / t ) 3-dim exp : r =  v/3V t ( 1 - (t /t ) ) conclusion:  ~ t ~ 1 / density for all quarks to be hadronized CAB0 0 + - 0 00 00 01 1 3 3 0 2

26 Color confinement as 1/density

27 Additive and multiplicative noise 1. Langevin p =  -  p  = G  = F  2C  2B  2D 2. Fokker Planck ∂f ∂t ∂ ∂p ∂ = ( K f ) - ( K f ) 1 2 2 2 K = F – Gp K = D – 2Bp + Cp 2 2 1 c c c Equivalent descriptions: AJ+TSB, PRL 94, 2005

28 Exact stationary distribution: f = f (D/K ) exp(- atan( ) )  0 v 2  D – Bp  p with v = 1 + G/2C  = GB/C – F  = DC – B 22 For F = 0 characteristic scale: p = D/C. c 2 power exponent (small or large) parameter

29 Exact stationary distribution for F = 0, B = 0: f = f ( 1 + ) 0 -( 1+G/2C ) 2 D C p With E = p / 2m this is a Tsallis distribution! f = f ( 1 + (q-1) ) 0 E 2 T q 1 – q Tsallis index: q = 1 + 2C / G Temperature: T = D / mG

30 Limits of the Tsallis distribution: p  p : Gauss p  p : Power-law c f ~ exp( - Gp /2D ) f ~ ( p / p ) 2 c -2v c

31 E  E : E  E : c f ~ exp( - E / T ) f ~ (E / E ) -v c c Relation between slope, inflection and power !! v = 1 + E / T c Energy distribution limits:

32 Stationary distributions For F=0, B=0 the Tsallis distribution is the exact stationary solution Gamma: p = 0.1 GeV F ≠ 0 Gauss: p = ∞ Zero: p = 10 GeV B = D/C Power: p = 1 GeV F ≠ 0 c c c c 2

33 Generalization p = z - G(E) ∂E ∂p. = 0 = 2 D(E)  (t-t') In the Fokker – Planck equation: K (p) = D(E) K (p) -G(E) ∂E ∂p 1 2 Stationary distribution: f(p) = exp - G(E) ∫ D(E) dE D(E) A () = TSB+GGy+AJ+GP, JPG31, 2005

34 Generalization Stationary distribution: f(p) = A exp - ∫ T(E) dE 1) Gibbs: T(E) = T  exp(-E/T) 2) Tsallis: T(E) = T/q + (1-1/q) E  ( 1 + (q-1) E / T) -q /(q-1) ()

35 Inverse logarithmic slope temperature T(E) 1 = ln f (E) d dE T (E) = D(E) G(E) + D'(E) T = D(0) / G(0) Gibbs T = D(E) / G(E) Einstein

36 slope c T T E E T Einstein Gibbs Walton – Rafelski ? T Gibbs T Einstein c E 111 =+ Special case: both D(E) and G(E) are linear

37 Fluctuation Dissipation theorem D (E) = 1 f(E) with f(E) stationary distribution ∫ E ∞ G (x) f(x) dx ij D (E) = T(E) ij G (E) + ij D' (E) ij ( ) ( Hamiltonian eom does not change energy E!) p = -G  E + z i ij ij.

38 Fluctuation Dissipation theorem particular cases ( for constant G ): D = T ij G D (E) = T + (q-1) E ij G ( ) Gibbs: Tsallis:

39 T. S. Bíró and G. Purcsel (University of Giessen, KFKI RMKI Budapest) Non-Extensive Boltzmann Equation Non-extensive thermodynamics 2-body Boltzmann Equation + non-ext. rules Unconventional distributions H-theorem and non-extensive entropy Numerical simulation hep-ph/0503204

40 Non-extensive thermodynamics f = f f 12 1 2 statistical independence E = h ( E, E ) 12 1 2 non-extensive addition rule non-extensive addition rules for energy, entropy, etc. h ( x, y ) ≠  x + y

41 Sober addition rules associativity: h ( h ( x, y ), z ) = h ( x, h ( y, z ) ) 1,2 2,3 3 1 general math. solution: maps it to additivity X ( h ) = X ( x ) + X ( y ) X( t ) is a strict monotonic, continous real function, X(0) = 0

42 Boltzmann equation ∫ 412  f = w ( f f - f f ) 1 1234 234 1 2 34 w = M  ( p + p - p - p ) 1234  1 234  ( h( E, E ) - h( E, E ) ) 3 2

43 Test particle simulation x y h(x,y) = const. E E E E 1 3 4 2 uniform random: Y(E ) = (  h/  y) dx ∫ 0 E 3 3 E E h=const

44 Recipe for binary events New energies: E = h_inv( h(E1,E2), 0 ) E3 = E * RND(0,1) reject if Y(E3) > Y(E) * RND(0,1) E4 = h_inv ( E, E3 ) New momenta: P[i] = p1[i] + p2[i], length P p3 = sqrt(E3*E3-m3*m3), p4 = sqrt(E4*E4-m4*m4) reject if P not in ( |p3-p4|, p3+p4) p3_x = (p3*p3 – p4*p4 + P*P)/(2*P), p3_t from p3 in-plane vec a[i]=P[i]/P, orthogonal in-plane vec b[i], p3[i] = p3_x * a[i] + p3_t * b[i], p4[i] = P[i] – p3[i].

45 Consequences canonical equilibrium: f ~ exp ( - X( E ) / T ) 2-body collisions: X(E ) + X(E ) = X(E ) + X(E ) non-extensive entropy density: s = df X ( - ln f ) H-theorem for X( S ) = - f ln f tot ∫ ∫ 1234

46 rule additive equilibrium entropy name h ( x, y ) X ( E ) f ( E ) s [ f ] general x + y E exp( - E / T) - f ln f Gibbs x + y + a xy ln(1+aE) (1+aE) (f - f)/(q-1) Tsallis -1/aTq ( x + y ) E exp( - E / T) … Lévy q q qq 1/q x y ln E E f Rényi q 1- q 1 - 1/ (1-q) T h e r m o d y n a m i c s e s a 1

47 S o m e m o r e... k-deformed statistics (G.Kaniadakis), X( E ) = (T / k) asinh ( kE / T ), h( x, y ) = x sqrt( 1 + ( ky / T ) ) + y sqrt( 1 + ( kx / T ) ) s[ f ] = ( f /(1-k) - f /(1+k) ) / 2k also gives a power-law tail: ~ (2kE/T) 1-k1+k 22 -1/k

48 Cascade simulation Momenta and energies of N “test” particles Microevent: new random momenta, so that X(E1) + X(E2) = X(E1’) + X(E2’) Relative angle rejection or acceptance Initially momentum spheres, Lorentz- boosted Distribution of E is followed and plotted logarithmically

49 Movie: Boltzmann a = 0 proton y=2

50

51 Movie: Boltzmann a = 0 pion y=2

52

53 Snapshot: Tsallis a = -0.2

54

55

56

57

58

59

60 Non-extensive Boltzmann eq. BG TS (a = 2)

61 Tsallis distribution

62 Hadron statistics 1. Gibbs thermodynamics: exponential 2. Non-extensive thermodynamics: power-law 3. Collective flow effects: scaling breakdown 4. low pt and high pt: connected? hep-ph/0409157 JPG31:1, 2005

63 Particle spectra and Eq. Of State (2  h) d N 3 V dk 3 = d  , k) f(  /T)   3     Spectrum Spectral functionthermodynamics Gibbs Tsallis... Peak: particle bgd.: field Shifted peak: quasiparticle

64 Quasiparticle approximation:  k In this case: ~ f (  / T) k d N dk 3 3 T : parameter of environment  = b F ( k/b ) : result of interactions k Modified quark matter dispersion: change F( x ) Modified thermodynamics: change f( x )

65 Experimental spectra: pp mesons, 30 GeV, p -tail v = 10.1 ± 0.3 pions, 30 GeV, m -tail v = 9.8 ± 0.1 pions, 540 GeV, m -tail v = 8.1 ± 0.1 quarkonia, 1.8 TeV, m -tail v = 7.7 ± 0.4 t t t t Gazdiczki + Gorenstein (hep-ph / 0103010) t t t t

66 Experimental spectra: AuAu pi, K, p, 200 GeV, m -scaling (i.e. E = m ) v = 16.3 (E = 2.71 GeV, T = 177 MeV) t t t t Schaffner-Bielich, McLerran, Kharezeev (NPA 705, 494, 2002) t t c

67 Experimental spectra: cosmic rays before knee, m -scaling (i.e. E = m ) v = 5.65 (E = 0.50 GeV, T = 107 MeV) in ankle, v = 5.50 (E = 0.48 GeV, T = 107 MeV) t t t Ch. Beck cond-mat / 0301354 tt c c

68 Experimental spectra: e-beam integral over longitudinal momenta TASSO 14 GeV v = 51 (E = 6.6 GeV) TASSO 34 GeV v = 9.16 (E = 0.94 GeV) DELPHI 91 GeV v = 5.50 (E = 0.56 GeV) DELPHI 161 GeV v = 5.65 (E = 0.51 GeV) t t t t Bediaga et.al. hep-ph / 9905255 c c c c

69 Gaussian fit to parton distribution: = D / G = 1... 1.5 GeV Power-tail in e+e- experiment (ZEUS): v = 5.8 ± 0.5 -> G / C = 9.6 ± 1 Derived inclination point at p = √ D / C = 3... 4 GeV. t 2 c Test v = 1 + E / T ☺ c

70 pions RHIC Au Au heavy ion collision 200 GeV q = 1.11727 T = 118 ± 9 MeV v = 9.527 ± 0.181 E = 1.008 ± 0.0973 GeV T = 364 ± 18 MeV  from AuAu at 200 GeV (PHENIX) 0 c 0 2 4 6 8 10 12 14 p (GeV) t 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E-0 d  2 2  p dp dy t t min. bias

71 Central 5%  transverse spectrum 0

72 Central 5%  transverse slope 0 D(E) T(E) = G(E) + D (E) '

73 All central transverse slopes Flow All central transverse slopes

74 Transverse flow correction E = u p =  (m cosh(y-  ) - v p cos(  -  ) ) Energy in flowing cell:   blue shifted Most detected: forward flying (blue shifted) at  = y,  = . E =  (m - v p ) T T T T Spectrum ~ ∫d  d  f(E)

75 Transverse flow corrected spectra forward flow !

76 E/N with Tsallis distribution Massless particles, d-dim. momenta, one ptl. average E = E c v – d – 1 d = 1 – d (q – 1) d T (Ito: =0) QGP E = ∫ dE E (1 + E / E ) d c ∫ d-1 c -v

77 E/N with Tsallis distribution Massive particles, 2-dim. momenta, one ptl. average energy E= a (2T + bm /(m+T) ) hadrons 2 with 1/a = 3 – 2q, b = 4q - 11q + 8 2 (BG: a=1, b=1) E > BG case for q > 1 _ _

78 Average transverse momentum R.Witt

79 Average transverse momentum

80 Limiting temperature with Tsallis distribution N = E – j T TE T = E / d Hagedorn  ; c c j=1 d c H Massless particles, d-dim. momenta, N-fold For N  2: Tsallis partons  Hagedorn hadrons ( with A. Peshier, Giessen )

81 Summary Basis of coalescence: valence quark model ALCOR: microcanonical nonlinear, non-eq. Mol.dyn.: nice spectra, but too slow Power-tailed stationary distributions from a) multiplicative noise b) Non-extensive Boltzmann-Equation Simple relation: v = 1 + E / T. Limiting temperature, m-scaling of exp.values c


Download ppt "Valence quark model of hadrons Quark recombination Hadronization dynamics Hadron statistics Quark Coalescence and Hadron Statistics T.S.Biró (RMKI Budapest,"

Similar presentations


Ads by Google