Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to Magnetic Resonance Imaging Bruno Quesson, CR1 CNRS.

Similar presentations


Presentation on theme: "Introduction to Magnetic Resonance Imaging Bruno Quesson, CR1 CNRS."— Presentation transcript:

1 Introduction to Magnetic Resonance Imaging Bruno Quesson, CR1 CNRS

2 Important magnetic field (~1 Tesla) General ElectricSiemensPhilips

3 MRI : Imaging of water and fat (soft tissues)

4 diagnostis healthy pathological brain animal breast Fat suppression

5 Tunable contrasts

6 Multislices 2D / 3D Any slice orientation is feasible

7 Functional Diagnosis Tissue looks normal but its function is altererd – Cardiac arythmia – Perfusion : thrombosis, tissue is nomore feed with blood – Diffusion : stroke – lungs : He3 imaging – … angiographyperfusionLung, He 3 Diffusion brain

8 Dynamic imaging (heart)

9 Spatial resolution can be adjusted Embryo of mice

10 fMRI : functional imaging of the brain activity signal changes with blood oxygenation – Task => use of oxygen – Indirect detection of the brain activity – Low signal variation (2%) => high filed Dynamic imaging (kinetic) 3D imaging (cover the entire brain) Statistical analysis Associate PET (radioactivity) et EEG (electrical activity)

11 Interventional imaging Definition : « guide a therapeutic procedure with the help of images» – Rapid acquisition -> real time – Real time reconstruction – Real time processing Examples : -to visualize catheter positioning – Substitution Xray to MRI -to identify a lesion and to guide the puncture – Ex : breast, liver, brain tumours

12 Interventionnal imaging : thermometry Pig liver Human temperatureThermal DoseFollow up T2Follow up T1

13 HOW IS THIS POSSIBLE???

14 Nuclear Magnetic Resonance : NMR Magnetic equilibrium : B0 static and intense Perturbation of the equilibrium : Excitation B1 (energy transferred to the system) Back to initial equilibrium state : Relaxation (energy transferred from the system) B 0 = 0 z B 0 ≠ 0 Macroscopic Magnetization M0 y x z y x z M0M0 z M0M0 z M0M0 B1B1 z M0M0 z M0M0 Emitted signal = NMR signal 

15 Modeling the NMR signal Vector mathematical formalism z M B0B0 y x Mz Mx My Mx(t)=? My(t)=? Mz(t)=? Solution of the Bloch differential equations : Mx(t) = M t (0).exp(-t/T 2 ).cos(  0 t) My(t) = M t (0).exp(-t/T2).sin(  0 t) Mz(t) = M0 – (M0 – Mz(0)).exp(-t/T 1 ) Transverse magnetization Longitudinal magnetization  0 =  B 0

16 transverse magnetization : exponential decay Helicoïdal motion y MtMt B0B0 x 100 80 60 40 20 0 Mt 1.00.80.60.40.20.0 Time / s Rotation around B0Amplitude : exponential decay Mt(t) = M t (0).exp(-t/T2).exp(  0 t) Detectable signal

17 Longitudinal magnetization z B0B0 x Mz 100 80 60 40 20 0 3.02.52.01.51.00.50.0 Mz Time / s Mz(t) = M0 – (M0 – Mz(0)).exp(-t/T 1 ) y

18 Typical NMR parameters at 1.5 Tesla 8550500breast 7055870cardiac muscle 951001800vitrous humor 7060775spleen 60 650kidney 6070600pancreas 7045500liver 8075934disk 951001200blood 4080830lung 10080252fat 4060400bone marrow 4060400Vertebral marrow 7045870SQuel Muscle 1001602400CSF 7090780WM 85100920GM M0 (%)T2 / msT1 / msTissue

19 Longitudinal (T1) and Transverse (T2) relaxation times Difference = contrast T1 contrast T2 contrast Proton Density

20 Acquisition sequence Sequence = a number of events which occur at different instants t B1 TRTR TeTe S2 = M0.(1-exp(-TR/T1)).exp(-Te/T2). exp(i  0 t) TeTe S1 = M0.exp(-Te/T2).exp(i  0 t)

21 Which contrast ? TR/T1 TE/T2 Contrast T1 Proton Density Contrast T1 and T2 Contrast T2 0

22 Examples

23 But how a MR image is obtained??? MR image = map of magnetization How can we separate signal coming from different locations???? B0B0 y x z y z S1 = M0.exp(-Te/T2).exp(i  0 t) S2 = M0.exp(-Te/T2).exp(i  0 t) S3 = M0.exp(-Te/T2).exp(i  0 t) S4 = M0.exp(-Te/T2).exp(i  0 t) S total = S1+S2+S3+S4

24 So what?? t t t t  t    Fourier Transformation It is NOT possible to distinguish individual signals

25 Let us make B0 vary in space B0B0 y x z y z S1 = M0.exp(-Te/T2).exp(i  1 t) S2 = M0.exp(-Te/T2).exp(i  2 t) S3 = M0.exp(-Te/T2).exp(i  3 t) S4 = M0.exp(-Te/T2).exp(i  4 t) S total = S1+S2+S3+S4 z B(z) = B0 + Gz.z  (z) =  0 + .Gz.z + Gz

26 So what?? t t t t   Fourier Transformation It is possible to distinguish individual signals from their spectrum in 1 direction    Profile

27 Mathematical description S(Gz,t) = MT(z).exp(-t/T2).exp(i[  0 + .Gz.z].t) dz S(Gz,t) = exp(-t/T2).exp(i  0.t) MT(z). exp(i. .Gz.z..t) dz S(kz) = exp(-t/T2).exp(i  0.t) MT(z). exp(i.kz.z.) dz We substitute kz = .Gz.t S(kz) = A MT(z). exp(i.kz.z.) dz = A. FT[ MT(z) ]

28 Back to the profile MT(z) = FT -1 [ S(kz) ] / A MT(z) = A-1. S(kz). exp(-i.kz.z.) dkz 1-We have to measure the signal for different kz (= g.Gz.t) conditions 2-We have to Fourier Transform these data sets to retrieve the profile of the object

29 Comparison of measurements under different Gz conditions      z Gz z z       

30 Graphical representation z kz Gz 0

31 In 2D : We have to repeat this 2 orthogonal directions z kz Gz y Gy ky Gz Gy

32 When the complete map is acquired, we get the image kz 2D Fourier Transformation ky Image Fourier space “k-space”

33 MRI acquisition sequence t t t t B1 Gs Gp Gr TRTR TeTe Gradient echo Trajectory in the Fourier space Contrast

34 Contrast manipulation Preparation Acquisition (of Fourier space) t t t t B1 Gs Gp Gr TeTe Ti t Ex: inversion recovery (IR)

35 Examples of signal modulation with Inversion -Recovery Ti = 0 s Ti = 66 ms Ti = 174 ms MT(t) = MT(0).exp(-t/T2) MT(0) = M0(1 – 2.exp(-Ti/T1)) Signal : with : Contrast modulation -100 -50 0 50 100 Mz 1.21.00.80.60.40.20.0 Time / s fat liver 100 80 60 40 20 0 Mt 0.40.30.20.10.0 fat liver 60 50 40 30 20 10 0 Mt 0.40.30.20.10.0 fat liver 100 80 60 40 20 0 Mt 0.40.30.20.10.0 Time / s fat liver

36 Selective perturbation Ex : « black blood » (BB) for cardiac imaging t t t t B1 Gs Gp Gr Ti (blood) Acquisition 180° BB prepulse Acquisition preparation t

37 Resulting images Without BB With BB pulse

38 Double inversion-recovery t t t t B1 Gs Gp Gr Acquisition 180° Motif DI Ti(1)Ti(2)

39 Gradient Echo sequence t t t t B1 Gs Gp Gr TRTR TeTe Gradient echo Trajectory in the Fourier space Contrast

40 Spin echo sequence Refocuses all magnetizations t t t t B1 Gs Gp Gr TRTR TeTe T e /2 Spin echo

41 Summary RF pulses – Variable angles – Frequency selective or not – Spatially selective or not Gradients A lot of possible combinaisons Strategy of the acquisition depends on the application


Download ppt "Introduction to Magnetic Resonance Imaging Bruno Quesson, CR1 CNRS."

Similar presentations


Ads by Google