Download presentation
Presentation is loading. Please wait.
Published byAlexis Pearson Modified over 11 years ago
1
Solution Stoichiometry Introduction, Concentration of a solution
2
YISHUN JC What will I learn? What is solution stoichiometry? Define the following terms: solution; solute; solvent; and concentration Calculate concentration based on the amount of solute and the total volume Convert concentration from mass per unit volume to number of moles per unit volume
3
YISHUN JC Introduction Many reactions can only occur when reactants are dissolved to form solutions Stoichiometry is the study of the quantitative composition of chemical substances the quantitative changes that take place during chemical reactions 1
4
YISHUN JC Introduction Many reactions can only occur when reactants are dissolved to form solutions Solution Stoichiometry is the study of the quantitative composition of solutions the quantitative changes that take place during chemical reactions that involve solutions
5
YISHUN JC Clarification of Terms Solution is a homogeneous liquid mixture Solute + Solvent Solution Smaller quantity Larger quantity (normally a liquid)
6
YISHUN JC Clarification of Terms Solution is a homogeneous liquid mixture Solute + Solvent Solution Concentration is a measure of the amount of solute dissolved in a given volume
7
YISHUN JC Molar Concentration Definition: The amount of solute (in moles) per unit volume of solution (in dm 3 ) Hence, 1 mole of solute dissolved in 1 dm 3 solution has molar concentration of 1 moldm -3 Units: moldm -3 Formula: 2
8
YISHUN JC Molar Concentration Definition: The amount of solute (in moles) per unit volume of solution (in dm 3 ) Hence, 1 mole of solute dissolved in 1 dm 3 solution has molar concentration of 1 moldm -3 Units: moldm -3 Formula:
9
YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. a) Calculate the concentration (in moldm -3 ) of the BaCl 2 solution formed
10
YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. a) Calculate the concentration (in moldm -3 ) of the BaCl 2 solution formed
11
YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. a) Calculate the concentration (in moldm -3 ) of the BaCl 2 solution formed
12
YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. b) Calculate the amount of BaCl 2 in 10.0 cm 3 of the above solution
13
YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. b) Calculate the amount of BaCl 2 in 10.0 cm 3 of the above solution
14
YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. b) Calculate the amount of BaCl 2 in 10.0 cm 3 of the above solution
15
YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. c) Calculate the concentration of Cl - ions in the above solution Since
16
YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. c) Calculate the concentration of Cl - ions in the above solution Since
17
YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. c) Calculate the concentration of Cl - ions in the above solution Since
18
YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ? ??
19
YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ?
20
YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ?
21
YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ?
22
YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ?
23
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution? 3
24
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
25
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
26
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
27
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
28
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
29
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
30
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
31
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
32
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
33
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?
34
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution? Since
35
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution? Since
36
YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution? Since
37
YISHUN JC Other Concentration Units Sometimes, concentration can be expressed in mass per unit volume
38
YISHUN JC Other Concentration Units Sometimes, concentration can be expressed in mass per unit volume Units: gdm -3
39
YISHUN JC Other Concentration Units Sometimes, concentration can be expressed in mass per unit volume Concentration (in gdm -3 ) can be converted to molar concentration via the equation:
40
YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. a) Calculate the concentration (in gdm -3 ) of the NaOH solution formed
41
YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. b) Calculate the concentration (in moldm -3 ) of the solution above
42
YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. b) Calculate the concentration (in moldm -3 ) of the solution above
43
YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. b) Calculate the concentration (in moldm -3 ) of the solution above
44
YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. b) Calculate the concentration (in moldm -3 ) of the solution above
45
YISHUN JC What have I learnt? What is solution stoichiometry? Define the following terms: solution; solute; solvent; and concentration Calculate concentration based on the amount of solute and the total volume Convert concentration from mass per unit volume to number of moles per unit volume
46
End of Lecture 1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.