Presentation is loading. Please wait.

Presentation is loading. Please wait.

Solution Stoichiometry Introduction, Concentration of a solution.

Similar presentations


Presentation on theme: "Solution Stoichiometry Introduction, Concentration of a solution."— Presentation transcript:

1 Solution Stoichiometry Introduction, Concentration of a solution

2 YISHUN JC What will I learn? What is solution stoichiometry? Define the following terms: solution; solute; solvent; and concentration Calculate concentration based on the amount of solute and the total volume Convert concentration from mass per unit volume to number of moles per unit volume

3 YISHUN JC Introduction Many reactions can only occur when reactants are dissolved to form solutions Stoichiometry is the study of the quantitative composition of chemical substances the quantitative changes that take place during chemical reactions 1

4 YISHUN JC Introduction Many reactions can only occur when reactants are dissolved to form solutions Solution Stoichiometry is the study of the quantitative composition of solutions the quantitative changes that take place during chemical reactions that involve solutions

5 YISHUN JC Clarification of Terms Solution is a homogeneous liquid mixture Solute + Solvent Solution Smaller quantity Larger quantity (normally a liquid)

6 YISHUN JC Clarification of Terms Solution is a homogeneous liquid mixture Solute + Solvent Solution Concentration is a measure of the amount of solute dissolved in a given volume

7 YISHUN JC Molar Concentration Definition: The amount of solute (in moles) per unit volume of solution (in dm 3 ) Hence, 1 mole of solute dissolved in 1 dm 3 solution has molar concentration of 1 moldm -3 Units: moldm -3 Formula: 2

8 YISHUN JC Molar Concentration Definition: The amount of solute (in moles) per unit volume of solution (in dm 3 ) Hence, 1 mole of solute dissolved in 1 dm 3 solution has molar concentration of 1 moldm -3 Units: moldm -3 Formula:

9 YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. a) Calculate the concentration (in moldm -3 ) of the BaCl 2 solution formed

10 YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. a) Calculate the concentration (in moldm -3 ) of the BaCl 2 solution formed

11 YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. a) Calculate the concentration (in moldm -3 ) of the BaCl 2 solution formed

12 YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. b) Calculate the amount of BaCl 2 in 10.0 cm 3 of the above solution

13 YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. b) Calculate the amount of BaCl 2 in 10.0 cm 3 of the above solution

14 YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. b) Calculate the amount of BaCl 2 in 10.0 cm 3 of the above solution

15 YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. c) Calculate the concentration of Cl - ions in the above solution Since

16 YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. c) Calculate the concentration of Cl - ions in the above solution Since

17 YISHUN JC Example 1 0.040 moles of BaCl 2 is dissolved in water to give a final volume of 250.0 cm 3. c) Calculate the concentration of Cl - ions in the above solution Since

18 YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ? ??

19 YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ?

20 YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ?

21 YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ?

22 YISHUN JC Example 2 1.06 g of anhydrous sodium carbonate, Na 2 CO 3 was dissolved in 250 cm 3 of solution. What is the concentration of the solution in moldm -3 ?

23 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution? 3

24 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

25 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

26 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

27 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

28 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

29 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

30 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

31 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

32 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

33 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution?

34 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution? Since

35 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution? Since

36 YISHUN JC Example 3 What is the concentration in moldm -3 of Al 3+ in a solution made by dissolving 12.7 g aluminium sulphate, Al 2 (SO 4 ) 3 in sufficient water to make 100 cm 3 of solution? Since

37 YISHUN JC Other Concentration Units Sometimes, concentration can be expressed in mass per unit volume

38 YISHUN JC Other Concentration Units Sometimes, concentration can be expressed in mass per unit volume Units: gdm -3

39 YISHUN JC Other Concentration Units Sometimes, concentration can be expressed in mass per unit volume Concentration (in gdm -3 ) can be converted to molar concentration via the equation:

40 YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. a) Calculate the concentration (in gdm -3 ) of the NaOH solution formed

41 YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. b) Calculate the concentration (in moldm -3 ) of the solution above

42 YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. b) Calculate the concentration (in moldm -3 ) of the solution above

43 YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. b) Calculate the concentration (in moldm -3 ) of the solution above

44 YISHUN JC Example 1 2.00 g of NaOH is dissolved in water to give a final volume of 150.0 cm 3. b) Calculate the concentration (in moldm -3 ) of the solution above

45 YISHUN JC What have I learnt? What is solution stoichiometry? Define the following terms: solution; solute; solvent; and concentration Calculate concentration based on the amount of solute and the total volume Convert concentration from mass per unit volume to number of moles per unit volume

46 End of Lecture 1


Download ppt "Solution Stoichiometry Introduction, Concentration of a solution."

Similar presentations


Ads by Google