Download presentation
Presentation is loading. Please wait.
Published byAidan Keene Modified over 11 years ago
1
Pat Langley Computational Learning Laboratory Center for the Study of Language and Information Stanford University, Stanford, California USA http://cll.stanford.edu/ Cognitive Architectures: Psychological Constraints as Effective Heuristics for Designing Intelligent Systems Thanks to D. Choi, K. Cummings, N. Nejati, S. Rogers, S. Sage, and D. Shapiro for their contributions. This talk reports research. funded by grants from DARPA IPTO and the National Science Foundation, which are not responsible for its contents.
2
Newells Claim view cognitive psychology and artificial intelligence as close allies with distinct but related goals; view cognitive psychology and artificial intelligence as close allies with distinct but related goals; move beyond isolated phenomena and capabilities to develop complete models of intelligent behavior; move beyond isolated phenomena and capabilities to develop complete models of intelligent behavior; demonstrate our systems intelligence on the same range of domains and tasks as humans can handle. demonstrate our systems intelligence on the same range of domains and tasks as humans can handle. In 1973, Allen Newell argued You cant play twenty questions with nature and win. Instead, he proposed that we: Newell was criticizing experimental psychology and looked to AI, with its systems perspective, for the solution.
3
The Fragmentation of AI Research action perception reasoning learning planning language …and is not taking us toward human-level intelligent systems. Unfortunately, AI has changed …
4
Psychological Constraints as Heuristics how the system should represent and organize knowledge; how the system should represent and organize knowledge; how the system should use that knowledge in performance; how the system should use that knowledge in performance; how the system should acquire knowledge from experience. how the system should acquire knowledge from experience. To develop intelligent systems, we must constrain their design, and findings about human behavior can suggest: Today, the most interesting research on intelligent systems uses psychological ideas as heuristics in this manner. This approach has led to many new insights, and we need more work in this tradition.
5
One Approach to Intelligent Systems action perception reasoning learning planning language software engineering / multi-agent systems
6
Newells vision for research on theories of intelligence was that: cognitive systems should make strong theoretical assumptions about the nature of the mind; cognitive systems should make strong theoretical assumptions about the nature of the mind; theories of intelligence should change only gradually, as new structures or processes are determined necessary; theories of intelligence should change only gradually, as new structures or processes are determined necessary; later design choices should be constrained heavily by earlier ones, not made independently. later design choices should be constrained heavily by earlier ones, not made independently. Integration vs. Unification A successful framework is all about mutual constraints, and it should provide a unified theory of intelligent behavior. He associated these aims with the idea of a cognitive architecture.
7
Another Approach to Intelligent Systems action perception reasoning learning planning language short-term beliefs and goals long-term memory structures cognitive architectures
8
A Constrained Cognitive Architecture action perception reasoning learning planning language short-term beliefs and goals long-term memory structures
9
The I CARUS Architecture In this talk I will use one such framework I CARUS to illustrate the influence of psychology on cognitive architectures. I CARUS incorporates a variety of assumptions from psychological theories; the most basic are that: These claims give I CARUS much in common with other cognitive architectures like ACT-R, Soar, and Prodigy. 1.Short-term memories are distinct from long-term stores 2.Memories contain modular elements cast as list structures 3.Long-term structures are accessed through pattern matching 4.Cognition occurs in retrieval/selection/action cycles 5.Performance and learning compose elements in memory
10
A cognitive architecture makes a specific commitment to: long-term memories that store knowledge and procedures; long-term memories that store knowledge and procedures; short-term memories that store beliefs and goals; short-term memories that store beliefs and goals; sensori-motor memories that hold percepts and actions. sensori-motor memories that hold percepts and actions. Architectural Commitment to Memories These memories correspond to ones postulated in psychology. For each memory, a cognitive architecture also commits to: the representation of content in that memory; the representation of content in that memory; the organization of structures within the memory; the organization of structures within the memory; the connections among structures across memories. the connections among structures across memories.
11
I CARUS Memories Long-TermConceptualMemory Long-Term Skill Memory Short-Term Belief Memory Short-Term Goal Memory Environment PerceptualBuffer MotorBuffer
12
concepts and skills encode different aspects of knowledge that are stored as distinct cognitive structures; concepts and skills encode different aspects of knowledge that are stored as distinct cognitive structures; cognition occurs in a physical context, with concepts and skills being grounded in perception and action; cognition occurs in a physical context, with concepts and skills being grounded in perception and action; many mental structures are relational in nature, in that they describe connections or interactions among objects; many mental structures are relational in nature, in that they describe connections or interactions among objects; long-term memories have hierarchical organizations that define complex structures in terms of simpler ones; long-term memories have hierarchical organizations that define complex structures in terms of simpler ones; each element in a short-term memory is an active version of some structure in long-term memory. each element in a short-term memory is an active version of some structure in long-term memory. Ideas about Representation Cognitive psychology makes important representational claims: I CARUS adopts these assumptions about the contents of memory.
13
Representing Long-Term Structures Conceptual clauses: A set of relational inference rules with perceived objects or defined concepts in their antecedents; Conceptual clauses: A set of relational inference rules with perceived objects or defined concepts in their antecedents; Skill clauses: A set of executable skills that specify: Skill clauses: A set of executable skills that specify: a head that indicates a goal the skill achieves; a head that indicates a goal the skill achieves; a single (typically defined) precondition; a single (typically defined) precondition; a set of ordered subgoals or actions for achieving the goal. a set of ordered subgoals or actions for achieving the goal. These define a specialized class of hierarchical task networks in which each task corresponds to a goal concept. I CARUS encodes two forms of general long-term knowledge:
14
I CARUS Concepts for In-City Driving ((in-rightmost-lane ?self ?clane) :percepts ((self ?self) (segment ?seg) :percepts ((self ?self) (segment ?seg) (line ?clane segment ?seg)) :relations ((driving-well-in-segment ?self ?seg ?clane) :relations ((driving-well-in-segment ?self ?seg ?clane) (last-lane ?clane) (not (lane-to-right ?clane ?anylane)))) ((driving-well-in-segment ?self ?seg ?lane) :percepts ((self ?self) (segment ?seg) (line ?lane segment ?seg)) :percepts ((self ?self) (segment ?seg) (line ?lane segment ?seg)) :relations ((in-segment ?self ?seg) (in-lane ?self ?lane) :relations ((in-segment ?self ?seg) (in-lane ?self ?lane) (aligned-with-lane-in-segment ?self ?seg ?lane) (centered-in-lane ?self ?seg ?lane) (steering-wheel-straight ?self))) ((in-lane ?self ?lane) :percepts ((self ?self segment ?seg) (line ?lane segment ?seg dist ?dist)) :percepts ((self ?self segment ?seg) (line ?lane segment ?seg dist ?dist)) :tests ((> ?dist -10) ( ?dist -10) (<= ?dist 0))) ((in-segment ?self ?seg) :percepts ((self ?self segment ?seg) (segment ?seg))) :percepts ((self ?self segment ?seg) (segment ?seg)))
15
((in-rightmost-lane ?self ?line) :percepts ((self ?self) (line ?line)) :percepts ((self ?self) (line ?line)) :start ((last-lane ?line)) :start ((last-lane ?line)) :subgoals ((driving-well-in-segment ?self ?seg ?line))) :subgoals ((driving-well-in-segment ?self ?seg ?line))) ((driving-well-in-segment ?self ?seg ?line) :percepts ((segment ?seg) (line ?line) (self ?self)) :percepts ((segment ?seg) (line ?line) (self ?self)) :start ((steering-wheel-straight ?self)) :start ((steering-wheel-straight ?self)) :subgoals ((in-segment ?self ?seg) :subgoals ((in-segment ?self ?seg) (centered-in-lane ?self ?seg ?line) (aligned-with-lane-in-segment ?self ?seg ?line) (steering-wheel-straight ?self))) ((in-segment ?self ?endsg) :percepts ((self ?self speed ?speed) (intersection ?int cross ?cross) :percepts ((self ?self speed ?speed) (intersection ?int cross ?cross) (segment ?endsg street ?cross angle ?angle)) :start ((in-intersection-for-right-turn ?self ?int)) :start ((in-intersection-for-right-turn ?self ?int)) :actions (( steer 1))) :actions (( steer 1))) I CARUS Skills for In-City Driving
16
Representing Short-Term Beliefs/Goals (current-street me A)(current-segment me g550) (lane-to-right g599 g601)(first-lane g599) (last-lane g599)(last-lane g601) (at-speed-for-u-turn me)(slow-for-right-turn me) (steering-wheel-not-straight me)(centered-in-lane me g550 g599) (in-lane me g599)(in-segment me g550) (on-right-side-in-segment me)(intersection-behind g550 g522) (building-on-left g288)(building-on-left g425) (building-on-left g427)(building-on-left g429) (building-on-left g431)(building-on-left g433) (building-on-right g287)(building-on-right g279) (increasing-direction me)(buildings-on-right g287 g279)
17
Encoding Perceived Objects (self me speed 5 angle-of-road -0.5 steering-wheel-angle -0.1) (segment g562 street 1 dist -5.0 latdist 15.0) (line g564 length 100.0 width 0.5 dist 35.0 angle 1.1 color white segment g562) (line g565 length 100.0 width 0.5 dist 15.0 angle 1.1 color white segment g562) (line g563 length 100.0 width 0.5 dist 25.0 angle 1.1 color yellow segment g562) (segment g550 street A dist oor latdist nil) (line g600 length 100.0 width 0.5 dist -15.0 angle -0.5 color white segment g550) (line g601 length 100.0 width 0.5 dist 5.0 angle -0.5 color white segment g550) (line g599 length 100.0 width 0.5 dist -5.0 angle -0.5 color yellow segment g550) (intersection g522 street A cross 1 dist -5.0 latdist nil) (building g431 address 99 street A c1dist 38.2 c1angle -1.4 c2dist 57.4 c2angle -1.0) (building g425 address 25 street A c1dist 37.8 c1angle -2.8 c2dist 56.9 c2angle -3.1) (building g389 address 49 street 1 c1dist 49.2 c1angle 2.7 c2dist 53.0 c2angle 2.2) (sidewalk g471 dist 15.0 angle -0.5) (sidewalk g474 dist 5.0 angle 1.07) (sidewalk g469 dist -25.0 angle -0.5) (sidewalk g470 dist 45.0 angle 1.07) (stoplight g538 vcolor green hcolor red))
18
Hierarchical Structure of Long-Term Memory concepts skills Each concept is defined in terms of other concepts and/or percepts. Each skill is defined in terms of other skills, concepts, and percepts. I CARUS organizes both concepts and skills in a hierarchical manner.
19
Hierarchical Structure of Long-Term Memory conceptsskills For example, the skill highlighted here refers directly to the highlighted concepts. I CARUS interleaves its long-term memories for concepts and skills.
20
In addition, a cognitive architecture makes commitments about: performance processes for: performance processes for: retrieval, matching, and selection retrieval, matching, and selection inference and problem solving inference and problem solving perception and motor control perception and motor control learning processes that: learning processes that: generate new long-term knowledge structures generate new long-term knowledge structures refine and modulate existing structures refine and modulate existing structures Architectural Commitment to Processes In most cognitive architectures, performance and learning are tightly intertwined, again reflecting influence from psychology.
21
humans can handle multiple goals with different priorities, which can interrupt tasks to which attention returns later; humans can handle multiple goals with different priorities, which can interrupt tasks to which attention returns later; conceptual inference, which typically occurs rapidly and unconsciously, is more basic than problem solving; conceptual inference, which typically occurs rapidly and unconsciously, is more basic than problem solving; humans often resort to means-ends analysis to solve novel, unfamiliar problems; humans often resort to means-ends analysis to solve novel, unfamiliar problems; mental problem solving requires greater cognitive resources than execution of automatized skills; mental problem solving requires greater cognitive resources than execution of automatized skills; problem solving often occurs in a physical context, with mental processing being interleaved with execution. problem solving often occurs in a physical context, with mental processing being interleaved with execution. Ideas about Performance I CARUS embodies these ideas in its performance mechanisms. Cognitive psychology makes clear claims about performance:
22
I CARUS Functional Processes Long-TermConceptualMemory Short-TermBeliefMemory Short-Term Goal Memory ConceptualInference SkillExecution Perception Environment PerceptualBuffer Problem Solving Skill Learning MotorBuffer Skill Retrieval and Selection Long-Term Skill Memory
23
I CARUS Inference-Execution Cycle 1.places descriptions of sensed objects in the perceptual buffer; 2.infers instances of concepts implied by the current situation; 3.finds paths through the skill hierarchy from top-level goals; 4.selects one or more applicable skill paths for execution; 5.invokes the actions associated with each selected path. On each successive execution cycle, the I CARUS architecture: This framework is very similar to the recognize-act cycle used in production systems, which in turn borrowed from S-R theories.
24
Basic I CARUS Processes concepts skills Concepts are matched bottom up, starting from percepts. Skill paths are matched top down, starting from intentions. I CARUS matches patterns to recognize concepts and select skills.
25
I CARUS Interleaves Execution and Problem Solving Executed plan Problem ? Skill Hierarchy Primitive Skills Reactive Execution impasse? Problem Solving yes no This organization reflects the psychological distinction between automatized and controlled behavior.
26
Interleaving Reactive Control and Problem Solving Solve(G) Push the goal literal G onto the empty goal stack GS. On each cycle, If the top goal G of the goal stack GS is satisfied, Then pop GS. Else if the goal stack GS does not exceed the depth limit, Let S be the skill instances whose heads unify with G. If any applicable skill paths start from an instance in S, Then select one of these paths and execute it. Else let M be the set of primitive skill instances that have not already failed in which G is an effect. If the set M is nonempty, Then select a skill instance Q from M. Push the start condition C of Q onto goal stack GS. Else if G is a complex concept with the unsatisfied subconcepts H and with satisfied subconcepts F, Then if there is a subconcept I in H that has not yet failed, Then push I onto the goal stack GS. Else pop G from the goal stack GS and store information about failure with G's parent. Else pop G from the goal stack GS. Store information about failure with G's parent. Else if G is a complex concept with the unsatisfied subconcepts H and with satisfied subconcepts F, Then if there is a subconcept I in H that has not yet failed, Then push I onto the goal stack GS. Else pop G from the goal stack GS and store information about failure with G's parent. Else pop G from the goal stack GS. Store information about failure with G's parent. This is traditional means-ends analysis, with three exceptions: (1) conjunctive goals must be defined concepts; (2) chaining occurs over both skills/operators and concepts/axioms; and (3) selected skills are executed whenever applicable.
27
A Successful Problem-Solving Trace (ontable A T) (on B A) (on C B) (hand-empty) (clear C) (unst. C B) (unstack C B) (clear B) (putdown C T) (unst. B A) (unstack B A) (clear A) (holding C)(hand-empty) (holding B) A B CB A C initial state goal
28
efforts to overcome impasses during problem solving can lead to the acquisition of new skills; efforts to overcome impasses during problem solving can lead to the acquisition of new skills; learning can transform backward-chaining heuristic search into more informed forward-chaining behavior; learning can transform backward-chaining heuristic search into more informed forward-chaining behavior; learning is incremental and interleaved with performance; learning is incremental and interleaved with performance; structural learning involves monotonic addition of symbolic elements to long-term memory; structural learning involves monotonic addition of symbolic elements to long-term memory; transfer to new tasks depends on the amount of structure shared with previously mastered tasks. transfer to new tasks depends on the amount of structure shared with previously mastered tasks. Claims about Learning Cognitive psychology has also developed ideas about learning: I CARUS incorporates these assumptions into its basic operation.
29
I CARUS Learns Skills from Problem Solving Executed plan Problem ? Skill Hierarchy Primitive Skills Reactive Execution impasse? Problem Solving yes no Skill Learning
30
I CARUS Constraints on Skill Learning What determines the hierarchical structure of skill memory? What determines the hierarchical structure of skill memory? The structure emerges the subproblems that arise during problem solving, which, because operator conditions and goals are single literals, form a semilattice. The structure emerges the subproblems that arise during problem solving, which, because operator conditions and goals are single literals, form a semilattice. What determines the heads of the learned clauses/methods? What determines the heads of the learned clauses/methods? The head of a learned clause is the goal literal that the planner achieved for the subproblem that produced it. The head of a learned clause is the goal literal that the planner achieved for the subproblem that produced it. What are the conditions on the learned clauses/methods? What are the conditions on the learned clauses/methods? If the subproblem involved skill chaining, they are the conditions of the first subskill clause. If the subproblem involved skill chaining, they are the conditions of the first subskill clause. If the subproblem involved concept chaining, they are the subconcepts that held at the subproblems outset. If the subproblem involved concept chaining, they are the subconcepts that held at the subproblems outset.
31
(ontable A T) (on B A) (on C B) (hand-empty) (clear C) (unst. C B) (unstack C B) (clear B) (putdown C T) (unst. B A) (unstack B A) (clear A) (holding C)(hand-empty) (holding B) A B CB A C 1 skill chaining Constructing Skills from a Trace
32
(ontable A T) (on B A) (on C B) (hand-empty) (clear C) (unst. C B) (unstack C B) (clear B) (putdown C T) (unst. B A) (unstack B A) (clear A) (holding C)(hand-empty) (holding B) A B CB A C 1 2 skill chaining Constructing Skills from a Trace
33
(ontable A T) (on B A) (on C B) (hand-empty) (clear C) (unst. C B) (unstack C B) (clear B) (putdown C T) (unst. B A) (unstack B A) (clear A) (holding C)(hand-empty) (holding B) A B CB A C 1 3 2 concept chaining Constructing Skills from a Trace
34
(ontable A T) (on B A) (on C B) (hand-empty) (clear C) (unst. C B) (unstack C B) (clear B) (putdown C T) (unst. B A) (unstack B A) (clear A) (holding C)(hand-empty) (holding B) A B CB A C 1 3 2 4 skill chaining Constructing Skills from a Trace
35
Learned Skills in the Blocks World Learned Skills in the Blocks World (clear (?C) :percepts((block ?D) (block ?C)) :start((unstackable ?D ?C)) :skills((unstack ?D ?C))) (clear (?B) :percepts ((block ?C) (block ?B)) :start((on ?C ?B) (hand-empty)) :skills((unstackable ?C ?B) (unstack ?C ?B))) (unstackable (?C ?B) :percepts((block ?B) (block ?C)) :start ((on ?C ?B) (hand-empty)) :skills((clear ?C) (hand-empty))) (hand-empty ( ) :percepts ((block ?D) (table ?T1)) :start ((putdownable ?D ?T1)) :skills ((putdown ?D ?T1))) Hierarchical skills are generalized traces of successful means-ends problem solving
36
Cumulative Curves for Two Domains Blocks World FreeCell Constraints from cognitive psychology can produce very effective approaches to speedup learning.
37
Learning Skills for In-City Driving We have trained I CARUS to drive in a simulated in-city environment. We provide the system with tasks of increasing complexity. Learning transforms the problem-solving traces into hierarchical skills. The agent uses these skills to change lanes, turn, and park using only reactive control.
38
The architecture also supports the transfer of knowledge in that: skills acquired later can build on those learned earlier; skills acquired later can build on those learned earlier; skill clauses are indexed by the goals they achieve. skill clauses are indexed by the goals they achieve. Transfer of Skills in I CARUS Experimental studies suggest that these lead to effective transfer.
39
Cognitive architectures come with a programming language that: includes a syntax linked to its representational assumptions includes a syntax linked to its representational assumptions inputs long-term knowledge and initial short-term elements inputs long-term knowledge and initial short-term elements provides an interpreter that runs the specified program provides an interpreter that runs the specified program incorporates tracing facilities to inspect system behavior incorporates tracing facilities to inspect system behavior Architectures as Programming Languages Such programming languages ease construction and debugging of knowledge-based systems. Thus, ideas from psychology can support efficient development of software for intelligent systems.
40
The programming language associated with I CARUS comes with: a syntax for concepts, skills, beliefs, and percepts a syntax for concepts, skills, beliefs, and percepts the ability to load and parse such programs the ability to load and parse such programs an interpreter for inference, execution, planning, and learning an interpreter for inference, execution, planning, and learning a trace package that displays system behavior over time a trace package that displays system behavior over time Programming in I CARUS We have used this language to develop adaptive intelligent agents in a variety of domains.
41
An I CARUS Agent for Urban Combat
42
Intellectual Precursors characteristics of human memory characteristics of human memory human problem solving human problem solving logical reasoning and inference logical reasoning and inference acquisition of cognitive skills acquisition of cognitive skills cognitive architectures (especially ACT, Soar, and Prodigy) cognitive architectures (especially ACT, Soar, and Prodigy) I CARUS design has been influenced by earlier research on: We can debate whether I CARUS provides an adequate theory of human behavior, but not its debt to cognitive psychology.
43
Directions for Future Research progressive deepening in forward-chaining search; progressive deepening in forward-chaining search; graded nature of categories and category learning; graded nature of categories and category learning; model-based character of human reasoning; model-based character of human reasoning; persistent but limited nature of short-term memories; persistent but limited nature of short-term memories; creating perceptual chunks to reduce these limitations; creating perceptual chunks to reduce these limitations; storing and retreiving episodic memory traces. storing and retreiving episodic memory traces. Future work on I CARUS should incorporate other ideas about: These additions will increase further I CARUS debt to psychology.
44
Contributions of I CARUS includes separate memories for concepts and skills; includes separate memories for concepts and skills; organizes both memories in a hierarchical fashion; organizes both memories in a hierarchical fashion; modulates reactive execution with goal seeking; modulates reactive execution with goal seeking; augments routine behavior with problem solving; and augments routine behavior with problem solving; and learns hierarchical skills in a cumulative manner. learns hierarchical skills in a cumulative manner. I CARUS is a cognitive architecture for physical agents that: These ideas have their roots in cognitive psychology, but they are also effective in building flexible intelligent agents. For more information about the I CARUS architecture, see: http://cll.stanford.edu/research/ongoing/icarus/ http://cll.stanford.edu/research/ongoing/icarus/ http://cll.stanford.edu/research/ongoing/icarus/
45
End of Presentation
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.