Download presentation
Presentation is loading. Please wait.
Published byIsabel Ross Modified over 11 years ago
1
FUUASTDept. of Com. Sc. & IT1 Computer Graphics Prof. Muhammad Saeed Department of Computer Science & IT Federal Urdu University of Arts, Science and Technology
2
FUUASTDept. of Com. Sc. & IT2 Computer Graphics Platonic Solids
3
FUUASTDept. of Com. Sc. & IT3 Computer Graphics Hexahedron(Cube) VerticesFacesEdges 8612
4
FUUASTDept. of Com. Sc. & IT4 Computer Graphics float [,] cube = { { 0.5, 0.5, 0.5 }, { 0.5, 0.5, -0.5 }, { -0.5, 0.5, -0.5 }, { -0.5, 0.5, 0.5 }, { 0.5, -0.5, 0.5 }, { 0.5, -0.5, -0.5 }, { -0.5, -0.5, -0.5 }, { -0.5, -0.5, 0.5 } }; int [,] cubeEdges = {{0,1},{1,2},{2,3},{3,0}, {4,5},{5,6},{6,7},{7,4}, {0,4},{1,5},{2,6},{3,7} }; int [,] cubeFaces={{0,1,2,3},{4,5,6,7},{0,4,5,1},{3,2,6,7},{0,3,7,4},{2,1,5,6}}; Vertices, Edges and Faces of Cube ( Centered at Origin)
5
FUUASTDept. of Com. Sc. & IT5 Computer Graphics Tetrahedron VerticesFacesEdges 446
6
FUUASTDept. of Com. Sc. & IT6 Computer Graphics float[,] tetra = { { -0.5, -0.288675133647, -0.20412414525 }, { 0.5, -0.288675133647 -0.20412414525}, { 0.0, 0.577350266353, -0.20412414525}, { 0.0, 0.0, 0.61237243575} }; int[,] tetraEdges={ {0,1},{1,2},{2,0}, {0,3},{1,3},{2,3} }; int[,] tetraFaces = { {0,2,1 },{0,1,3},{1,2,3},{0,3,2}}; Vertices, Edges and Faces of Tetrahedron ( Centered at Origin)
7
FUUASTDept. of Com. Sc. & IT7 Computer Graphics Octahedron VerticesFacesEdges 6812
8
FUUASTDept. of Com. Sc. & IT8 Computer Graphics float[,] octa = { {-0.5, -0.5, 0, }, { 0.5, -0.5, 0, }, { 0.5, 0.5, 0, }, {-0.5, 0.5, 0, }, { 0, 0, 0.70710678 }, { 0, 0, -0.70710678 } }; int[,] octaEdges ={ {0,1},{1,2},{2,3},{3,0}, {0,4},{1,4},{2,4},{3,4}, {0,5},{1,5},{2,5},{3,5} }; int[,] octaFaces = { {0,1,4},{1,2,4},{2,3,4},{3,0,4}, {0,5,1},{5,2,1},{5,3,2},{0,3,5} }; Vertices, Edges and Faces of Octahedron (Centered at Origin)
9
FUUASTDept. of Com. Sc. & IT9 Computer Graphics Icosahedron VerticesFacesEdges 122030
10
FUUASTDept. of Com. Sc. & IT10 Computer Graphics float[,] icosa = { {-0.5, -0.68819096, 0.425325404}, { 0.5, -0.68819096, 0.425325404}, {0.809016995, 0.262865559, 0.425325404}, {0.0, 0.850650808,0.425325404}, {-0.809016995, 0.262865559, 0.425325404}, {0, -0.850650808, -0.425325404}, {0.809016995, -0.262865557, -0.425325404}, {0.5, 0.68819096, -0.425325404}, {-0.5, 0.68819096, -0.425325404}, {-0.809016995,-0.262865551, -0.425325404}, {0, 0, 0.951056516}, {0, 0, -0.951056516} }; Vertices, Edges and Faces of Icosahedron (Centered at Origin)
11
FUUASTDept. of Com. Sc. & IT11 Computer Graphics int [,] icosaEdges = { {0,1},{1,2},{2,3},{3,4},{4,0}, {5,6},{6,7},{7,8},{8,9},{9,5}, {0,5},{5,1},{1,6},{6,2},{2,7},{7,3},{3,8},{8,4},{4,9},{9,0}, {0,10},{1,10},{2,10},{3,10},{4,10}, {5,11},{6,11},{7,11},{8,11},{9,11} }; int [,] icosaFaces = { {0,1,10},{1,2,10},{2,3,10},{3,4,10},{4,0,10}, {6,5,11},{7,6,11},{8,7,11},{9,8,11},{5,9,11}, {1,0,5},{1,5,6},{2,1,6},{2,6,7},{3,2,7}, {3,7,8},{4,3,8},{4,8,9},{0,4,9},{0,9,5} }; Vertices, Edges and Faces of Icosahedron (Centered at Origin)
12
FUUASTDept. of Com. Sc. & IT12 Computer Graphics Dodecahedron VerticesFacesEdges 201230
13
FUUASTDept. of Com. Sc. & IT13 Computer Graphics float[,] dodeca = { 0, -0.458793974, 0.600569108 }, {0.436338997, -0.141775134, 0.600569108 }, {0.26967233, 0.371172122, 0.600569108 }, {-0.26967233, 0.371172122, 0.600569108 }, {-0.436338997, -0.141775134, 0.600569108 }, {0.269672331, -0.371172123, -0.600569108 }, {0.436338997, 0.141775134, -0.600569108 }, {0, 0.458793973, -0.600569108 }, {-0.436338997, 0.141775134, -0.600569108 }, {-0.269672331, -0.371172123, -0.600569108 }, {0, -0.742344244, 0.141775134 }, {0.436338997, -0.60056911, -0.141775134 }, {0.706011328, -0.229396987, 0.141775134 }, {0.706011328, 0.229396987, -0.141775134 }, {0.436338997, 0.600569109, 0.141775134 }, Vertices, Edges and Faces of Dodecahedron (Centered at Origin)
14
FUUASTDept. of Com. Sc. & IT14 Computer Graphics {0, 0.742344243, -0.141775134 }, {-0.436338997, 0.600569108, 0.141775134 }, {-0.706011328, 0.229396987, -0.141775134}, {-0.706011328, -0.229396987, 0.141775134 }, {-0.436338997, -0.600569108, -0.141775134 } }; Continued ………… int [,] dodecaEdges = { {0,1},{1,2},{2,3},{3,4},{4,0}, {5,6},{6,7},{7,8},{8,9},{9,5}, {0,10},{1,12},{2,14},{3,16},{4,18}, {10,11},{11,12},{12,13},{13,14},{14,15},{15,16},{16,17},{17,18},{18,19},{19,10}, {5,11},{6,13},{7,15},{8,17},{9,19} }; int [,] dodecaFaces = { { 4,3,2,1,0}, {5,6,7,8,9}, {12,11,10,0,1}, {1,2,14,13,12}, {2,3,16,15,14}, {3,4,18,17,16}, {0,10,19,18,4}, {11,12,13,6,5}, {13,14,15,7,6}, {7,8,17,16,15}, {9,8,17,18,19}, {10,11,5,9,19} }; Vertices, Edges and Faces of Dodecahedron (Centered at Origin)
15
FUUASTDept. of Com. Sc. & IT15 Computer Graphics Non Platonic Archimedian Buckyball (Truncated Icosahedron) VerticesFacesEdges 603290 Consists of 20 Regular Hexagons & 12 Regular Pentagons Has many types and number of faces differ from type to type Data ( Vertices and Edges) in separate file
16
FUUASTDept. of Com. Sc. & IT16 Computer Graphics Buckyball consists of 20 regular hexagons & 12 regular pentagons has many types and number of faces differ from type to type Data for all the solids discussed include 1)Vertices 2)Edges 3)Faces(Surfaces) 4)Normals(unit) Filename: DataForPlatonicSolidsBuckyball.doc
17
FUUASTDept. of Com. Sc. & IT17 Computer Graphics END Platonic Solids
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.