Download presentation
Presentation is loading. Please wait.
Published byMason Bauer Modified over 10 years ago
1
GRAPHS Prof. Muhammad Saeed Analysis of Algorithms Analysis Of Algorithms1
2
2
3
3
4
4
5
5
6
Topological Sort Analysis Of Algorithms6
7
Indegree Before Dequeue Vertex 1234567 V1V1 0 V2V2 1 V3V3 2 V4V4 3 V5V5 1 V6V6 3 V7V7 2 enqueueV1V1 dequeueV1V1 Topological Sort Step by Step Step 1 Analysis Of Algorithms7
8
Indegree Before Dequeue Vertex 1234567 V1V1 0 V2V2 1 V3V3 2 V4V4 3 V5V5 1 V6V6 3 V7V7 2 enqueueV1V1 dequeueV1V1 Topological Sort 0 0 1 2 1 3 2 V2V2 V2V2 Step by Step Step 2 Analysis Of Algorithms8
9
Indegree Before Dequeue Vertex 1234567 V1V1 0 V2V2 1 V3V3 2 V4V4 3 V5V5 1 V6V6 3 V7V7 2 enqueueV1V1 dequeueV1V1 Topological Sort 0 0 1 2 1 3 2 V2V2 V2V2 0 0 1 1 0 3 2 V5V5 V5V5 Step by Step Step 3 Analysis Of Algorithms9
10
Indegree Before Dequeue Vertex 1234567 V1V1 0 V2V2 1 V3V3 2 V4V4 3 V5V5 1 V6V6 3 V7V7 2 enqueueV1V1 dequeueV1V1 Topological Sort 0 0 1 2 1 3 2 V2V2 V2V2 0 0 1 1 0 3 2 V5V5 V5V5 0 0 1 0 0 3 1 V4V4 V4V4 Step by Step Step 4 Analysis Of Algorithms10
11
Indegree Before Dequeue Vertex 1234567 V1V1 0 V2V2 1 V3V3 2 V4V4 3 V5V5 1 V6V6 3 V7V7 2 enqueueV1V1 dequeueV1V1 Topological Sort 0 0 1 2 1 3 2 V2V2 V2V2 0 0 1 1 0 3 2 V5V5 V5V5 0 0 1 0 0 3 1 V4V4 V4V4 0 0 0 0 0 2 0 V 3, V 7 V3V3 Step by Step Step 5 Analysis Of Algorithms11
12
Indegree Before Dequeue Vertex 1234567 V1V1 0 V2V2 1 V3V3 2 V4V4 3 V5V5 1 V6V6 3 V7V7 2 enqueueV1V1 dequeueV1V1 Topological Sort 0 0 1 2 1 3 2 V2V2 V2V2 0 0 1 1 0 3 2 V5V5 V5V5 0 0 1 0 0 3 1 V4V4 V4V4 0 0 0 0 0 2 0 V 3, V 7 V3V3 0 0 0 0 0 1 0 V7V7 Step by Step Step 6 Analysis Of Algorithms12
13
Indegree Before Dequeue Vertex 1234567 V1V1 0 V2V2 1 V3V3 2 V4V4 3 V5V5 1 V6V6 3 V7V7 2 enqueueV1V1 dequeueV1V1 Topological Sort 0 0 1 2 1 3 2 V2V2 V2V2 0 0 1 1 0 3 2 V5V5 V5V5 0 0 1 0 0 3 1 V4V4 V4V4 0 0 0 0 0 2 0 V 3, V 7 V3V3 0 0 0 0 0 1 0 V7V7 0 0 0 0 0 0 0 V6V6 V6V6 Step by Step Step 7 Analysis Of Algorithms13
14
Indegree Before Dequeue Vertex 1234567 V1V1 0 V2V2 1 V3V3 2 V4V4 3 V5V5 1 V6V6 3 V7V7 2 enqueueV1V1 dequeueV1V1 Topological Sort 0 0 1 2 1 3 2 V2V2 V2V2 0 0 1 1 0 3 2 V5V5 V5V5 0 0 1 0 0 3 1 V4V4 V4V4 0 0 0 0 0 2 0 V 3, V 7 V3V3 0 0 0 0 0 1 0 V7V7 0 0 0 0 0 0 0 V6V6 V6V6 Analysis Of Algorithms14
15
Analysis Of Algorithms15 Complexity Analysis Topological Sort
16
Shortest Path Algorithm Unweighted Graphs Analysis Of Algorithms16
17
Shortest Path Algorithm Unweighted Graphs Initial State v Knowndvdv pvpv v1v1 0 0 v2v2 0 0 v3v3 000 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 Q v3v3 Step by Step Step 1 Analysis Of Algorithms17
18
Shortest Path Algorithm Unweighted Graphs Initial State v Knowndvdv pvpv v1v1 0 0 v2v2 0 0 v3v3 000 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 Q v3v3 v 3 dequeued Knowndvdv pvpv 01v3v3 0 0 100 0 0 0 0 01v3v3 0 0 v 1, v 6 Step by Step Step 2 Analysis Of Algorithms18
19
Shortest Path Algorithm Unweighted Graphs Initial State v Knowndvdv pvpv v1v1 0 0 v2v2 0 0 v3v3 000 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 Q v3v3 v 3 dequeued Knowndvdv pvpv 01v3v3 0 0 100 0 0 0 0 01v3v3 0 0 v 1, v 6 v 1 dequeued Knowndvdv pvpv 11v3v3 02v1v1 100 02v1v1 0 0 01v3v3 0 0 v 6, v 2, v 4 Step by Step Step 3 Analysis Of Algorithms19
20
Shortest Path Algorithm Unweighted Graphs Initial State v Knowndvdv pvpv v1v1 0 0 v2v2 0 0 v3v3 000 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 Q v3v3 v 3 dequeued Knowndvdv pvpv 01v3v3 0 0 100 0 0 0 0 01v3v3 0 0 v 1, v 6 v 1 dequeued Knowndvdv pvpv 11v3v3 02v1v1 100 02v1v1 0 0 01v3v3 0 0 v 6, v 2, v 4 v 6 dequeued Knowndvdv pvpv 11v3v3 02v1v1 100 02v1v1 0 0 11v3v3 0 0 v 2, v 4 Step by Step Step 4 Analysis Of Algorithms20
21
Shortest Path Algorithm Unweighted Graphs v 2 dequeued v Knowndvdv pvpv v1v1 11v3v3 v2v2 12v1v1 v3v3 100 v4v4 02v1v1 v5v5 03v2v2 v6v6 11v3v3 v7v7 0 0 Q v 4, v 5 v 6 dequeued Knowndvdv pvpv 11v3v3 02v1v1 100 02v1v1 0 0 11v3v3 0 0 v 2, v 4 Step by Step Step 5 Analysis Of Algorithms21
22
Shortest Path Algorithm Unweighted Graphs v 2 dequeued v Knowndvdv pvpv v1v1 11v3v3 v2v2 12v1v1 v3v3 100 v4v4 02v1v1 v5v5 03v2v2 v6v6 11v3v3 v7v7 0 0 Q v 4, v 5 v 4 dequeued Knowndvdv pvpv 11v3v3 12v1v1 100 12v1v1 03v2v2 11v3v3 03v4v4 v 5, v 7 v 6 dequeued Knowndvdv pvpv 11v3v3 02v1v1 100 02v1v1 0 0 11v3v3 0 0 v 2, v 4 Step by Step Step 6 Analysis Of Algorithms22
23
Shortest Path Algorithm Unweighted Graphs v 2 dequeued v Knowndvdv pvpv v1v1 11v3v3 v2v2 12v1v1 v3v3 100 v4v4 02v1v1 v5v5 03v2v2 v6v6 11v3v3 v7v7 0 0 Q v 4, v 5 v 4 dequeued Knowndvdv pvpv 11v3v3 12v1v1 100 12v1v1 03v2v2 11v3v3 03v4v4 v 5, v 7 v 5 dequeued Knowndvdv pvpv 11v3v3 12v1v1 100 12v1v1 13v2v2 11v3v3 03v4v4 v7v7 v 6 dequeued Knowndvdv pvpv 11v3v3 02v1v1 100 02v1v1 0 0 11v3v3 0 0 v 2, v 4 Step by Step Step 7 Analysis Of Algorithms23
24
Shortest Path Algorithm Unweighted Graphs v 2 dequeued v Knowndvdv pvpv v1v1 11v3v3 v2v2 12v1v1 v3v3 100 v4v4 02v1v1 v5v5 03v2v2 v6v6 11v3v3 v7v7 0 0 Q v 4, v 5 v 4 dequeued Knowndvdv pvpv 11v3v3 12v1v1 100 12v1v1 03v2v2 11v3v3 03v4v4 v 5, v 7 v 5 dequeued Knowndvdv pvpv 11v3v3 12v1v1 100 12v1v1 13v2v2 11v3v3 03v4v4 v7v7 v 7 dequeued Knowndvdv pvpv 11v3v3 12v1v1 100 12v1v1 13v2v2 11v3v3 13v4v4 empty v 6 dequeued Knowndvdv pvpv 11v3v3 02v1v1 100 02v1v1 0 0 11v3v3 0 0 v 2, v 4 Step by Step Step 8 Analysis Of Algorithms24
25
Shortest Path Algorithm Unweighted Graphs v 2 dequeued v Knowndvdv pvpv v1v1 11v3v3 v2v2 12v1v1 v3v3 100 v4v4 02v1v1 v5v5 03v2v2 v6v6 11v3v3 v7v7 0 0 Q v 4, v 5 v 4 dequeued Knowndvdv pvpv 11v3v3 12v1v1 100 12v1v1 03v2v2 11v3v3 03v4v4 v 5, v 7 v 5 dequeued Knowndvdv pvpv 11v3v3 12v1v1 100 12v1v1 13v2v2 11v3v3 03v4v4 v7v7 v 7 dequeued Knowndvdv pvpv 11v3v3 12v1v1 100 12v1v1 13v2v2 11v3v3 13v4v4 empty v 6 dequeued Knowndvdv pvpv 11v3v3 02v1v1 100 02v1v1 0 0 11v3v3 0 0 v 2, v 4 n = |V| T(n) = O(n 2 ) for arrays T(n) = O(|V| + |E|) for adjacency List Analysis Of Algorithms25
26
Shortest Path Algorithm Unweighted Graphs Analysis Of Algorithms26 Complexity Analysis T(n) = O(n 2 ) for arrays T(n) = O(|V| + |E|) for adjacency List
27
Analysis Of Algorithms27 END OF ( Shortest Path Unweighted Graphs ) Algorithm
28
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm Analysis Of Algorithms28
29
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm Initial State v Knowndvdv pvpv v1v1 000 v2v2 0 0 v3v3 0 0 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 Q v1v1 Step by Step Step 1 Analysis Of Algorithms29
30
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm Initial State v Knowndvdv pvpv v1v1 000 v2v2 0 0 v3v3 0 0 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 Q v1v1 v 1 dequeued Knowndvdv pvpv 100 02v1v1 000 01v1v1 0 0 0 0 0 0 v 2, v 4 Step by Step Step 2 Analysis Of Algorithms30
31
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm v 2 dequeued Knowndvdv pvpv 100 12v1v1 03v4v4 01v1v1 03v4v4 09v4v4 05v4v4 v 2, v 5, v 3, v 6, v 7, Step by Step Step 3 v 1 dequeued Knowndvdv pvpv 100 02v1v1 000 01v1v1 0 0 0 0 0 0 v 4, v 2 Initial State v Knowndvdv pvpv v1v1 000 v2v2 0 0 v3v3 0 0 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 Q v1v1 Analysis Of Algorithms31
32
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm v 2 dequeued Knowndvdv pvpv 100 12v1v1 000 01v1v1 012v2v2 0 0 0 0 v 4, v 5 Step by Step Step 4 v 1 dequeued Knowndvdv pvpv 100 02v1v1 000 01v1v1 0 0 0 0 0 0 v 2, v 4 Initial State v Knowndvdv pvpv v1v1 000 v2v2 0 0 v3v3 0 0 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 Q v1v1 v 4 dequeued Knowndvdv pvpv 100 12v1v1 03v4v4 11v1v1 03v4v4 09v4v4 05v4v4 v 5, v 3, v 6,v 7 Analysis Of Algorithms32
33
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm Step by Step Step 5 v 5 dequeued v Knowndvdv pvpv v1v1 100 v2v2 12v1v1 v3v3 03v4v4 v4v4 11v1v1 v5v5 13v4v4 v6v6 09v4v4 v7v7 05v4v4 Q v 3, v 6,v 7 v 4 dequeued Knowndvdv pvpv 100 12v1v1 030 11v1v1 03v4v4 09v4v4 05v4v4 v 5, v 3, v 6,v 7 Analysis Of Algorithms33
34
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm Step by Step Step 6 v 3 dequeued Knowndvdv pvpv 100 12v1v1 13v4v4 11v1v1 13v4v4 08v3v3 05v4v4 v6,v7v6,v7 v 5 dequeued v Knowndvdv pvpv v1v1 100 v2v2 12v1v1 v3v3 030 v4v4 11v1v1 v5v5 13v4v4 v6v6 09v4v4 v7v7 05v4v4 Q v 3, v 6,v 7 v 4 dequeued Knowndvdv pvpv 100 12v1v1 030 11v1v1 03v4v4 09v4v4 05v4v4 v 5, v 3, v 6,v 7 Analysis Of Algorithms34
35
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm v 6 dequeued Knowndvdv pvpv 100 12v1v1 13v4v4 11v1v1 13v4v4 18v3v3 05v4v4 v7v7 Step by Step Step 7 v 3 dequeued Knowndvdv pvpv 100 12v1v1 130 11v1v1 13v4v4 08v3v3 05v4v4 v6,v7v6,v7 v 5 dequeued v Knowndvdv pvpv v1v1 100 v2v2 12v1v1 v3v3 030 v4v4 11v1v1 v5v5 13v4v4 v6v6 09v4v4 v7v7 05v4v4 Q v 3, v 6,v 7 v 4 dequeued Knowndvdv pvpv 100 12v1v1 030 11v1v1 03v4v4 09v4v4 05v4v4 v 5, v 3, v 6,v 7 Analysis Of Algorithms35
36
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm v 6 dequeued Knowndvdv pvpv 100 12v1v1 130 11v1v1 13v4v4 18v3v3 05v4v4 v7v7 Step by Step Step 8 v 3 dequeued Knowndvdv pvpv 100 12v1v1 130 11v1v1 13v4v4 08v3v3 05v4v4 v6,v7v6,v7 v 5 dequeued v Knowndvdv pvpv v1v1 100 v2v2 12v1v1 v3v3 030 v4v4 11v1v1 v5v5 13v4v4 v6v6 09v4v4 v7v7 05v4v4 Q v 3, v 6,v 7 v 4 dequeued Knowndvdv pvpv 100 12v1v1 030 11v1v1 03v4v4 09v4v4 05v4v4 v 5, v 3, v 6,v 7 v 7 dequeued Knowndvdv pvpv 100 12v1v1 13v4v4 11v1v1 13v4v4 16v7v7 15v4v4 Empty Analysis Of Algorithms36
37
Shortest Path Algorithm Weighted Graphs Dijkstras Algorithm Analysis Of Algorithms37 Complexity Analysis T(n) = O(V 2 ) for Arrays T(n) = O(|E| log(|V|) for Binary Minimum Heap T(n) = O(|E| +|V|log(|V|) ) for Fibonacci Heap
38
Analysis Of Algorithms38 END OF Dijkstras Algorithm
39
Analysis Of Algorithms39 Shortest Path Algorithm Negative Weighted Graphs Bellman-Fords Algorithm
40
Analysis Of Algorithms40 BELLMAN-FORD (G, w, s) INITIALIZE-SINGLE-SOURCE (G, s) for each vertex i = 1 to V[G] - 1 do for each edge (u, v) in E[G] do RELAX (u, v, w) For each edge (u, v) in E[G] do if d[u] + w(u, v) < d[v] then return FALSE return TRUE
41
Analysis Of Algorithms41 s zy 6 7 8 -3 7 2 9 -2 x t -4 5 ………….Bellman-Fords Algorithm
42
Analysis Of Algorithms42 s zy 6 7 8 -3 7 2 9 -2 x t -4 5 s zy 6 7 8 -3 7 2 9 -2 x t -4 5 ………….Bellman-Fords Algorithm
43
Analysis Of Algorithms43 s zy 6 7 8 -3 7 2 9 -2 x t -4 5 s zy 6 7 8 -3 7 2 9 -2 x t -4 5 ………….Bellman-Fords Algorithm
44
Analysis Of Algorithms44 s zy 6 7 8 -3 7 2 9 -2 x t -4 s zy 6 7 8 -3 7 2 9 -2 x t -4 5 ………….Bellman-Fords Algorithm
45
Analysis Of Algorithms45 Complexity Analysis T(n) = O(VE) Bellman-Ford Algorithm
46
Analysis Of Algorithms46 END OF Bellman-Ford Algorithm A C B ED 2 4 -3 23 53 4 π: nil d: 0 π: nil A d: -1 π: nil C d: 2 π: nil A d: 4 π: nil d:
47
Minimum Spanning Tree Weighted and Undirected Graphs Prims Algorithm Analysis Of Algorithms47
48
Prims Algorithm Initial State v Knowndvdv pvpv v1v1 000 v2v2 0 0 v3v3 0 0 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 v1v1 Step by Step Step 1 Minimum Spanning Tree Weighted and Undirected Graphs Analysis Of Algorithms48
49
Initial State v Knowndvdv pvpv v1v1 000 v2v2 0 0 v3v3 0 0 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 v1v1 Minimum Spanning Tree Weighted and Undirected Graphs v 1 known Knowndvdv pvpv 100 02v1v1 04v1v1 01v1v1 0 0 0 0 0 0 v 2, v 3,v 4 Prims Algorithm Step by Step Step 2 Analysis Of Algorithms49
50
Initial State v Knowndvdv pvpv v1v1 000 v2v2 0 0 v3v3 0 0 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 v1v1 Minimum Spanning Tree Weighted and Undirected Graphs v 1 known Knowndvdv pvpv 100 02v1v1 04v1v1 01v1v1 0 0 0 0 0 0 v 2, v 3,v 4 Prims Algorithm Step by Step Step 3 v 4 known Knowndvdv pvpv 100 02v1v1 02v4v4 11v1v1 07v4v4 08v4v4 04v4v4 v 2,v 3, v 5, v 6, v 7 Analysis Of Algorithms50
51
Initial State v Knowndvdv pvpv v1v1 000 v2v2 0 0 v3v3 0 0 v4v4 0 0 v5v5 0 0 v6v6 0 0 v7v7 0 0 v1v1 Minimum Spanning Tree Weighted and Undirected Graphs v 1 known Knowndvdv pvpv 100 02v1v1 04v1v1 01v1v1 0 0 0 0 0 0 v 2, v 3,v 4 Prims Algorithm Step by Step Step 4 v 4 known Knowndvdv pvpv 100 02v1v1 02v4v4 11v1v1 07v4v4 08v4v4 04v4v4 v 2,v 3, v 5, v 6, v 7 v 2 known Knowndvdv pvpv 100 12v1v1 02v4v4 11v1v1 07v4v4 08v4v4 04v4v4 v 3, v 5, v 6, v 7 Analysis Of Algorithms51
52
v 3 known v Knowndvdv pvpv v1v1 100 v2v2 12v1v1 v3v3 12v4v4 v4v4 11v1v1 v5v5 07v4v4 v6v6 05v3v3 v7v7 04v4v4 v 5, v 6, v 7 Minimum Spanning Tree Weighted and Undirected Graphs Prims Algorithm Step by Step Step 5 v 2 known Knowndvdv pvpv 100 12v1v1 02v4v4 11v1v1 07v4v4 08v4v4 04v4v4 v 3, v 5, v 6, v 7 Analysis Of Algorithms52
53
v 3 known v Knowndvdv pvpv v1v1 100 v2v2 12v1v1 v3v3 12v4v4 v4v4 11v1v1 v5v5 07v4v4 v6v6 05v3v3 v7v7 04v4v4 v 5, v 6, v 7 Minimum Spanning Tree Weighted and Undirected Graphs v 7 known Knowndvdv pvpv 100 12v1v1 12v4v4 11v1v1 06v7v7 01v7v7 14v4v4 v 5, v 6 Prims Algorithm Step by Step Step 6 v 2 known Knowndvdv pvpv 100 12v1v1 02v4v4 11v1v1 07v4v4 08v4v4 04v4v4 v 3, v 5, v 6, v 7 Analysis Of Algorithms53
54
v 3 known v Knowndvdv pvpv v1v1 100 v2v2 12v1v1 v3v3 12v4v4 v4v4 11v1v1 v5v5 07v4v4 v6v6 05v3v3 v7v7 04v4v4 v 5, v 6, v 7 Minimum Spanning Tree Weighted and Undirected Graphs v 7 known Knowndvdv pvpv 100 12v1v1 12v4v4 11v1v1 06v7v7 01v7v7 14v4v4 v 5, v 6 Prims Algorithm Step by Step Step 7 v 6 known Knowndvdv pvpv 100 12v1v1 12v4v4 11v1v1 06v7v7 11v7v7 14v4v4 v5v5 v 2 known Knowndvdv pvpv 100 12v1v1 02v4v4 11v1v1 07v4v4 08v4v4 04v4v4 v 3, v 5, v 6, v 7 Analysis Of Algorithms54
55
Minimum Spanning Tree Weighted and Undirected Graphs Prims Algorithm Step by Step Step 8 v 5 known Knowndvdv pvpv 100 12v1v1 12v4v4 11v1v1 16v7v7 11v7v7 14v4v4 v 2 known Knowndvdv pvpv 100 12v1v1 02v4v4 11v1v1 07v4v4 08v4v4 04v4v4 v 3, v 5, v 6, v 7 v 3 known v Knowndvdv pvpv v1v1 100 v2v2 12v1v1 v3v3 12v4v4 v4v4 11v1v1 v5v5 07v4v4 v6v6 05v3v3 v7v7 04v4v4 v 5, v 6, v 7 v 7 known Knowndvdv pvpv 100 12v1v1 12v4v4 11v1v1 06v7v7 01v7v7 14v4v4 v 5, v 6 v 6 known Knowndvdv pvpv 100 12v1v1 12v4v4 11v1v1 06v7v7 11v7v7 14v4v4 v5v5 Total Cost = 16 Analysis Of Algorithms55
56
Prims Algorithm Analysis Of Algorithms56 Complexity Analysis
57
Analysis Of Algorithms57 END OF Prims Algorithm
58
Minimum Spanning Tree Weighted and Undirected Graphs Kruskals Algorithm Analysis Of Algorithms58
59
Kruskals Algorithm Step by Step Step 1 Minimum Spanning Tree Weighted Undirected Graphs Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Analysis Of Algorithms59
60
Minimum Spanning Tree Weighted and Undirected Graphs Kruskals Algorithm Analysis Of Algorithms60 Complexity Analysis T(n) = O(|E|log(|E|) ) T(n) = O(|E|log(|V|) )
61
Analysis Of Algorithms61 End of Kruskals Algorithm
62
End End GRAPHS Analysis Of Algorithms62
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.