Download presentation
Presentation is loading. Please wait.
Published byCorey Horn Modified over 9 years ago
1
Chapter 4 Introduction to Nanochemistry
2
2 Chapter 4 Periodicity of the Elements Chemical Bonding Intermolecular Forces Nanoscale Structures Practical Applications
3
| SectionChapter | Section 1: Periodicity of the Elements 3 Introduction to Nanochemistry 14 The Elements Periodic Table of the Elements Periodic Trends
4
| SectionChapter | The Elements 4 Periodicity of the Elements 14 Helium Atom −2 Neutrons and 2 protons in the nucleus −2 Electrons moving about the nucleus An Element Is an Atom with a Unique Chemical Identity The Presence of 2 Protons in the Nucleus Is Unique to the Helium Atom −# Neutrons changes — helium isotopes −# Electrons changes — helium ions −# Protons changes — not helium!
5
| SectionChapter | The Elements 5 Periodicity of the Elements 14 Atomic Properties Atomic Structure Quantum Numbers and Electron Configurations
6
| SectionChapter | Atomic Properties 6 Periodicity of the Elements 14 Element Symbol — 1 or 2 Letters Atomic Number — Number of Protons in Element (Z) Mass Number — Number of Protons and Neutrons (A) Isotopes — Elements with Varying Numbers of Neutrons
7
| SectionChapter | Atomic Structure 7 Periodicity of the Elements 14
8
| SectionChapter | Quantum Numbers and Electron Configurations 8 Periodicity of the Elements 14
9
| SectionChapter | Periodic Table of the Elements 9 Periodicity of the Elements 14
10
| SectionChapter | Periodic Table of the Elements 10 Periodicity of the Elements 14 Metals Nonmetals Metalloids
11
| SectionChapter | Periodic Table of the Elements 11 Periodicity of the Elements 14
12
| SectionChapter | Typical Chemical Reactions 12 Periodicity of the Elements 14 1. Metal + Nonmetal → Salt −2 Al (s) + 3 Br 2(g) → 2 AlBr 3(s) 2a. Metal Oxide + Water → Metal Hydroxide −Na 2 O (s) + H 2 O (l) → 2 NaOH (aq) 2b. Nonmetal Oxide + Water → Acid −CO 2(g) + H 2 O (l) → H 2 CO 3(aq) 3. Metal Oxide + Acid → Salt + Water −NiO (s) + H 2 SO 4(l) → NiSO 4(aq) + H 2 O (l)
13
| SectionChapter | Periodic Trends 13 Periodicity of the Elements 14 Atomic Number Atomic Size Ionization Energy Electron Affinity Electronegativity
14
| SectionChapter | Periodic Trends: Atomic Number (Number of Protons in Nucleus) 14 Periodicity of the Elements 14 Increasing atomic number
15
| SectionChapter | Periodic Trends: Atomic Size 15 Periodicity of the Elements 14 Increasing atomic size
16
| SectionChapter | Periodic Trends: Electron Affinity (atom + e — → atom — + energy) 16 Periodicity of the Elements 14 Increasing electron affinity
17
| SectionChapter | Periodic Trends: Ionization Energy (atom + energy → atom + + e — ) 17 Periodicity of the Elements 14 Increasing ionization energy
18
| SectionChapter | Periodic Trends: Electronegativity 18 Periodicity of the Elements 14 Increasing electronegativity
19
| SectionChapter | Section 2: Chemical Bonding 19 Introduction to Nanochemistry 24 Ionic Bonds Covalent Bonds
20
| SectionChapter | Chemical Bonding 20 Introduction to Nanochemistry 24 Ionic Bonds Covalent Bonds
21
| SectionChapter | Electronegativity Values 21 Chemical Bonding 24 Electronegativity Difference Between Atoms − ≳ 1.7 Ionic − ≲ 1.7 Covalent
22
| SectionChapter | Ionic Bonds 22 Chemical Bonding 24 Na + ½ Cl 2 → [ Na + + Cl – ] → NaCl Ca + Cl 2 → [ Ca +2 + Cl – + Cl – ] → CaCl 2
23
| SectionChapter | Covalent Bonds 23 Chemical Bonding 24
24
| SectionChapter | Molecules with Functional Groups 24 Chemical Bonding 24
25
| SectionChapter | Polar Covalent Bonds 25 Chemical Bonding 24 Electronegativity 3.5 Oxygen 2.1 Hydrogen
26
| SectionChapter | Section 3: Intermolecular Forces 26 Introduction to Nanochemistry 34 Dipole-Dipole Interactions Hydrogen Bonding
27
| SectionChapter | Charge Carrier 27 Intermolecular Forces 34 Ions Dipole Induced Dipole
28
| SectionChapter | Dipole Interactions 28 Intermolecular Forces 34
29
| SectionChapter | Hydrogen Bonding 29 Intermolecular Forces 34 Liquid Water Ice
30
| SectionChapter | Hydrogen Bonding: Watson-Crick Base Pairs 30 Intermolecular Forces 34
31
| SectionChapter | Section 4: Nanoscale Structures 31 Introduction to Nanochemistry 44 Polymers and Copolymers Dendrimers Self-Assembled Monolayers Nanoparticles Quantum Dots Carbon Nanotubes Fullerenes
32
| SectionChapter | Polymers and Copolymers 32 Nanoscale Structures 44
33
| SectionChapter | Dendrimers 33 Nanoscale Structures 44
34
| SectionChapter | Self-Assembled Monolayers 34 Nanoscale Structures 44
35
| SectionChapter | Self-Assembled Monolayers 35 Nanoscale Structures 44
36
| SectionChapter | Self-Assembled Monolayers 36 Nanoscale Structures 44 Functional Groups −Layer-by-layer (LbL)/electrostatic self- assembly (ESA) Substrates −Gold Biocompatible Inert −Other metals −Silicon oxides Optical transparency
37
| SectionChapter | Nanoparticles 37 Nanoscale Structures 44 Gold Nanoparticles Quantum Dots
38
| SectionChapter | Gold Nanoparticles 38 Nanoscale Structures 44 1 to >100 nm Uniform Size Distribution Red Color, Not Gold Easily Modified Surface Properties Gold Is Inert in Biological Organisms
39
| SectionChapter | Quantum Dots 39 Nanoscale Structures 44
40
| SectionChapter | Quantum Dots 40 Nanoscale Structures 44
41
| SectionChapter | Carbon Allotropes 41 Nanoscale Structures 44 Carbon NanotubeC 60 Fullerene sp 3 Carbon: Diamond sp 2 Carbon: Graphite, Graphene, Fullerenes, Carbon Nanotubes
42
| SectionChapter | Carbon Nanotubes 42 Nanoscale Structures 44 Multi Walled Nano Tube
43
| SectionChapter | Carbon Nanotubes 43 Nanoscale Structures 44 Exploring Structures −Fibers Typical lengths: 1-100 μm −Containers Adding end caps Enclosing atoms, molecules, C 60 fullerenes Enclosing carbon nanotubes (i.e., multi-walled nanotubes) −Surface modification Via van der Waals interactions Via chemical reactions
44
| SectionChapter | C 60 Fullerenes 44 Nanoscale Structures 44 C 60
45
| SectionChapter | Section 5: Practical Applications 45 Introduction to Nanochemistry 54 Drug Delivery Biological Sensors Solar Cells Nanocatalysts
46
| SectionChapter | Drug Delivery 46 Practical Applications 54 β-cyclodextrancamptothecin
47
| SectionChapter | Drug Delivery 47 Practical Applications 54 60 nm Nanoparticle (m ≈ 17, MW 97 kDa)
48
| SectionChapter | Biological Sensors 48 Practical Applications 54 Selectivity in Biological Matrix −Differentiate among similar biomolecules Sensitivity to Biological Concentrations −Sensitive detectors −Chemical/biological amplification Efficient −Cost effective −Throughput/turnaround time
49
| SectionChapter | Biological Sensors 49 Practical Applications 54
50
| SectionChapter | Solar Cells 50 Practical Applications 54 Current and Potential Applications −Improve efficency >1 Electron per photon Moving electrons between electrodes −Alternatives to silica Polymer matrix −Cost reduction Alternative photon absorbers
51
| SectionChapter | Nanocatalysts 51 Practical Applications 54
52
| SectionChapter | Nanocatalysts 52 Practical Applications 54 Encapsulated Enzyme Particles −Isolatable −Enhanced stability From thermal denaturation From proteolytic enzymes
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.