Download presentation
Presentation is loading. Please wait.
Published byThomasina Whitehead Modified over 9 years ago
1
Study of response uniformity of LHCb ECAL Mikhail Prokudin, ITEP
2
Outline ► Motivation ► Geometry of modules ► Experimental setup ► Procedure ► MC modeling ► Results light yield ► Conclusion
3
Motivation ► “Shashlik” technology cheap fast enough ► trigger radiation hard easy to segment ► Resolution a – stochastic term ~8%/sqrt(E) b – constant term ► stochastic term decrease thickness of absorber ► increased volume ratio increased Morier radius ► more shower overlaps ► keep volume ratio constant photostatistics ► constant term increase the volume ratio technology ► die-mold price ~10k $ ► MC model of light propagation in scintillator tile 7% RD36 data
4
Modules geometry ► LHCb ► inner: 4x4cm 2 cells ► middle: 6x6cm 2 cells ► outer: 12x12cm 2 cells 67x4mm layers of scintillator 66x2mm layers of lead ► Prototype 4x4cm 2 cells 280x0.5mm layers of scintillator 280x0.5mm layers of lead
5
Experimental setup Beam e, μ Beam plug Calorimeter 25.111m10.97m2.935 new chamber old chambers Calorimeter assembly 8 modules (12x12cm 2 x1) for leakage control testing module LED1 LED2 PIN LED monitoring system scheme
6
Coordinate determination ► Beam size: 3x3cm 2 ► Energy cut: 60-65% MPV position ► Details of calorimeter construction are visible Shifts corrected for each position Same procedure for electrons Muons
7
Muons. Procedure ► energy only in central cell ► 1x1 mm 2 regions ► fit with Landau distribution first fit to estimate ranges second fit with ► f(x start )=0.4*Max ► f(x end )=0.05*Max no Landau Gauss convolution ► much more statistics
8
Electrons. procedure ► Collect energy in 3x3+4 cells wider signals with if other 4 cells included ► 1x1 mm 2 regions ► Iterative fit procedure [-1.2 δ, +2 δ ] region
9
MC modeling ► Signal nonuniformity Light collection nonuniformity ► Special ray tracer program Scintillator tile thickness variations ► Measured directly Convolution with particle energy deposition “natural” smearing energy deposition nonuniformity dead material ► GEANT
10
Ray tracer program ► Optics refraction ► Fresnel formulas reflection ► mirror ► diffuse attenuation ► in medium ► on surface all processes could depend on wavelength ► Geometry geometrical primitives ► cylinder ► box Boolean operations voxelization ► Main optical parameters quality of scintillator surface whiteness of paint size of “edging”
11
Example of ray tracer test ► Edge effect in light collection compensate dead material between tiles not trivial LHCb innovation
12
LHCb inner module ElectronsMuons Scale!
13
LHCb inner module. Between fibers Near fibers Between fibers ElectronsMuons Gray – MC. Black – data. Scale!
14
Prototype module Prototype. 0.5мм LHCb. 4мм Scale!
15
Prototype module and inner LHCb module Gray – MC. Black – data. Scale! Between fibers Near fibers Between fibers Near fibers LHCb inner Prototype
16
LHCb outer module ► 12x12cm 2 ► Distance between fibers 15mm 10mm in inner module ► Only 2 delay wire chambers worse position resolution ► One set of optical parameters to describe all data! Between fibers Near fibers Gray – MC. Black – data.
17
Light yield Experiment ► Use monitoring system MC ► Generate photons uniformly inside tile volume ► Inner module for normalization Testbeam Cosmic setup MC inner300031003000 middle360035003600 outer250026002570 prototype700-600
18
Conclusions ► Measurements of uniformity of LHCb calorimeter response presented different probes ► electrons ► muons different modules ► inner ► outer ► prototype absorber and scintillator thickness 0.5mm ► Calorimeter response uniformity modeled thickness measurements light collection ► ray tracer code developed ► tile model created Geant ► dead material simulation ► Model parameters extracted and checked for various geometries
20
Coordinate determination ► Modify coefficients residuals ► keep mean at 0 ► narrow ► Cut χ 2 <4 denominator from “Delay wire chambers...” by J.Spanggaard.
21
Lacing
22
Ray tracer testing ► Visualize trajectories individual photons using ROOT for drawing
23
Geant model ► Geant3 ► Gorynych framework for ITEP FLINT experiment ► Tile model with holes and fibers same as for ray- tracing ► 67x4mm scintillator layers 66x2mm layers of lead ► Dead material steel tape, 0.2mm thick white paint, 0.15mm at edge of tile Steel tape, 0.2 mm White paint, 0.15 mm Fiber in each hole
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.