Download presentation
Presentation is loading. Please wait.
Published byAva Stephens Modified over 11 years ago
1
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Report of the Special Expert Working Group on Chemical Erosion S. Brezinsek TF-E Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich, Germany SEWG members: CEA E. Tsitrone, E. Delchambre FZJA. Pospieszczyk, A. Kirschner, A.Kreter, D. Borodin, V. Philipps … IPPW. Jacob, J. Roth, Ch. Hopf, T. Schwarz-Selinger R. Pugno, A. Kallenbach, W. Bohmeyer, M. Baudach … UKAEAM.F. Stamp CIEMAT F. Tabares, D. Tafalla, J.A. Ferreira FOM G. vanRooij, J. Westerhout and TFE members
2
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Motivation - ITER Beryllium Tungsten ITER Lifetime issues Erosion, transport, and deposition of divertor material (CFC) Erosion, transport, and deposition of first wall material (Be) => mixed material systems (Be, C, W) Control of transient heat loads (ELMs and disruptions) Safety issues Retention of tritium via co-deposition Methods to release the trapped tritium Dust formation (Be and T) Research goal: minimisation of risks and optimisation of ITER availability! Issues reflect the principle structure of the special expert working groups! All topics are related to each other! Graphite
3
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek ITER – Divertor Plasma Parameter Range Standard operation scenario Semi-detached and recombining divertor plasma (T e <1.5eV) High ion and atom flux ( >3*10 24 m -3 ) High surface temperature (up to1600 K) B2-Eirene simulation for the ITER outer divertor (A.S. Kukushkin) Result from AUG with W main chamber and C divertor (Kallenbach et al. 2006) : Outer Divertor is the remaining source of carbon => Chemical erosion main process
4
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Chemical Erosion Yield - Present Description Erosion yield Y as function of Surface temperature Incident ion energy Incident particle flux But in ITER: Detached plasma operation Comparable atom and ion flux Low energy of incident particles Hot target surface Fuel outflux: Hydrocarbon influx: C chem D Erosion yield:
5
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Motivation - Tasks Which species are eroded from the PFC? Methane-, ethane-, propane family …. Where are the species eroded from? How much is eroded? Spatial distribution of the erosion yield along the target …. What does the plasma do with the eroded hydrocarbons? Hydrocarbon catabolism and transport…. Where are the break-up products deposited? Inner divertor …. Amount of deposited particles? Which hydrocarbon films are produced? Hard layers, soft layers…. Which species is re-eroded? Higher hydrocarbons preferred …. We have to understand: We should (try to) influence (control) these processes to ensure a safe operation. Erosion Migration Deposition Re-erosion
6
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek ITER predictions / SEWG Predictions for ITER Data base & Codes: HYDKIN ADAS, TRIM … Code and data base validation: benchmark experiments TEXTOR, AUG, TJ-II … Plasma background B2-Eirene or EDGE2D Tokamak experiments JET, AUG, TEXTOR… ERO modelling Laboratory experiments MAJESTIX … Linear experiments pilot-MAGNUM, PSI-II
7
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Outline Recent experimental results from: TEXTOR TJ-II ASDEX Upgrade JET Pilot-MAGNUM PSI-II Laboratory Experiments (IPP) ERO – ITER predictions
8
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek TEXTOR Photon efficiency calibration: benchmark for HYDKIN and ERO Hydrocarbon catabolism 13 CH 4 experiments Long term deposition and erosion pattern ….
9
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Spectroscopic approach Photon flux proportional to particle flux (in ionising plasmas) C 2 CD C 2y2 A-X CD 4 A-X Effective inverse photon efficiencies (D/XB-values) include dissociation chain D/XB-values depend on geometry, surface conditions etc. = B D X : Chemical erosion yield is given by a corrected methane erosion yield
10
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Comparison with HYDKIN and ERO calculations: D/XB values without contamination from deposited and re- eroded hydrocarbons Simple and highly reproducible plasmas D/XB Exp. =36 D/XB HYDKIN =46 D/XB ERO =32 CD A-X band (CD from CD 4 ) TEXTOR: Photon Efficiencies for Methane plasma gas inlet CD A-X 430.7+/-1.0nm CD A-X 430.7+/-1.0nm gas inlet B B top view side view # 98032# 98031 TEXTOR high field side ERO modelling CD A-X light
11
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek C x H y in D plasmas: T e =35 eV, n e =2.2*10 18 m -3 at the emission location C x D y in H plasmas: T e =45 eV, n e =1.8*10 18 m -3 at the emission location CH A-X band (Gerö band) C 2 d-a band (Swan band) Brezinsek et al. PSI 2006 TEXTOR: Effective Photon Efficiencies for C x H y, C x D y
12
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek HYDKIN: Photon Efficiencies for Methane Comparison of measured effective photon efficiencies with HYDKIN (Reaction kinetic analysis - Reiter 2006) for CH from CH 4 (const. plasma, no deposition, no transport) Janev-Reiter database is reliable in the range between 5 eV and 100 eV Influence of other surface parameter and geometry: loss of photons Data base is used as input for the ERO code! Brezinsek et al. PSI 2006
13
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek TEXTOR: CD + Observed in Hot Edge Plasmas TEXTOR benchmark experiment with CD 4 : 20 % of theoretically expected CI 909.5 nm per C observed 50 % of theoretically expected CII at 426.7 nm per C + observed 20 % of theoretically expected D per D observed => CD + identified in TEXTOR plasmas => break-up via molecular ions important
14
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Part of the dissociation chain (CH 4 ): CH 4 + CH 4 CH 3 + CH 3 CH 2 CHC CH 2 + CH + C+C+ C 2+ Reaction kinetic analysis with HYDKIN (Reiter 2006) for CH 4 T e =45 eV CH + CH T e =5 eV CH CH + Hot limiter plasma (TEXTOR, TJII)Cold divertor plasma (AUG, JET) HYDKIN: CH + vs. CH in the C x H y Catabolism
15
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek TJ-II Hydrocarbon injection experiments a-C:H film production and destruction due to hydrocarbon puffing Nitrogen scavenger experiments ….
16
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek TJ-II: Hydrocarbon Injection Experiments Stellarator – current free device; Strong ripple; ECRH heated plasmas Injection of CH 4, C 2 H 4 and H 2 through a mobile instrumented graphite limiter Gas pulses of 12-15 ms (4 – 8x10 18 particles) Much lower fuelling efficiency for C 2 H 4 than for H 2. H α photon yield 15% per H atom that of H 2 (Garcia-Cortes et al. JNM 2005) Photon flux ratio CH/H α 3 times higher for C 2 H 4 than for CH 4 (T e =3eV n e =2x10 18 m -3 ) deposition of carbon films with high H content H CH Tabares et al. PSI2006 C2H4C2H4
17
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek AUG Photon efficiencies, hydrocarbon particle fluxes and erosion yield in detached and attached plasmas Long term erosion deposition pattern Carbon source determination 13 CH 4 injection experiments ….
18
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek AUG: Hydrocarbon Injection in Detached Plasmas L-mode discharges with outer divertor detachment Injection of CH 4 and C 2 H 4 in the SOL, Separatrix and PFR in the volume: T e =1.2 eV, n e =3*10 20 m -3 at the target (separatrix): T e =2.3 eV, n e =4*10 18 m -3
19
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Brezinsek et al. PFCM 2006 AUG: Photon Efficiencies in Detached Plasmas Intrinsic CD A-X spectrum --- attached plasma --- Intrinsic CD A-X spectrum with strong BD contamination --- detached plasma --- CH A-X spectrum from injection and CD A-X intrinsic background --- detached plasma --- CH A-X spectrum from injection and CD A-X intrinsic background --- attached plasma ---
20
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Brezinsek et al. PFCM 2006 AUG: Photon Efficiencies in Detached Plasmas Intrinsic C 2 d-a spectrum --- attached plasma --- Intrinsic C 2 d-a spectrum --- detached plasma --- C 2 d-a spectrum from injection --- detached plasma --- C 2 d-a spectrum from injection --- attached plasma --- Below the detection limit!
21
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek AUG: Erosion Yields in Detached Plasmas Decrease of CH and C 2 light much stronger than increase of D/XB => Significant decrease of the hydrocarbon flux in detachment D/XB for CH from CH 4 : 18 +/-7 D/XB for CH from C 2 H 4 : 47 +/-19 Measured D/XB values are slightly higher than in attached plasmas and higher than predictions with HYDKIN! Y chem =3.2*10 -2 (ion flux only) Y chem =2.9*10 -3 (atom and ion flux) Erosion yield at the separatrix for detached conditions: Reduced influx is largely compensated by lower plasma ion outflux => atom outflux important Roth-formula: Y chem =2.5*10 -3 (atom and ion flux)
22
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek JET Hydrocarbon injection experiments a-C:H film production and destruction as function of the strike-point Nitrogen scavenger experiments 13 CH 4 tracer experiment ….
23
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Circumferential injection into the attached outer divertor: i) Discharge with C 2 H 4 injection ii) Discharge with H 2 injection Nearly identical local plasma conditions Assumption: symmetric and homogenous injection JET: C x H y Contribution to the Erosion Yield
24
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Most reliable value for Y chem is achieved when the strike point is at GIM10 Toroidal inhomogeneity of gas injection module included (=> information from 13 CH 4 tracer experiments) Bypass in the outer divertor considered! Photon efficiencies and erosion yield lowered in comparison to first analysis (Brezinsek et al. EPS 2005) D/XB for C 2 Swan band from C 2 H 4 about 75 Y chem associated to higher hydrocarbons about 0.6% Brezinsek et al. PSI 2006 JET: C x H y Contribution to the Erosion Yield
25
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek JET: Preferred Release of Hydrogen-rich Hydrocarbons a-C:D layer 14.3 s 14.7 s 15.0 s ch3 Spectroscopy detects: strong C 2 light emission Deposition monitor: strong material deposition Soft layer detected and (re)moved/cleaned. Brezinsek et al JNM2005 Ratio of C 2 /CH line emission indicate hydrogen-rich layer near to louvre Strike-point utilised to clean up deposited areas Thermal decomposition of deposited layers most probable
26
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek JET: History Effect 0 20 40 60 80 100 120 140 68133 68134 68135 68136681376813868139 68140 68141 68142 68143681446814568146 68147 68148 JET pulse # normalized [Hz/s] H mode cleaning sweep L mode reference sweep H mode horizontal target H mode vertical target Identical discharges! double NBI Material deposition on the QMB depends on the strike-point position of previous discharges! Identical plasma discharges lead to different net deposition on QMB Strike-point configuration as well as ELM type influence deposition
27
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Pilot-MAGNUM Erosion yield at ITER-relevant fluxes ….
28
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Pilot-MAGNUM: Plasma Parameter Range Arc Coils Thomson Scattering Target Spectroscopy 0.55 m Parameter variation: Source current & flow Vessel pressure Magnetic field Target potential >10 23 H + /m 2 s>10 24 H + /m 2 s>10 25 H + /m 2 s Ion fluxes and plasma parameters at the target are comparable to predicted ITER divertor conditions! v. Rooij et al. ITPA Toronto 2006
29
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Pilot-Magnum: First Results on Erosion Yields Ionising hydrogen plasma (T e =3.5 eV) in front of the fine grain graphite target. Preliminary work based on CH A-X band analysis: gas injection for calibration in preparation uncertainties in the surface temperature New experiments planed! Experimental data in-line with the Roth-formula!
30
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek PSI-II Re-erosion of hydrocarbons at elevated wall temperatures Hydrocarbon spectroscopy ….
31
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek TMP QMS analyses the exhaust ~1 m upstream forepump Large collector probe duct Langmuir probe 100 sccm H 2 discharge region target chamber 0.1 Pa TM pumps 20 cm floating W disk CH 4 +100 sccm H 2 ~200C ~ 150C 0.8 Pa PSI-II: C x H y Erosion from Deposited a-C:H Layers Bohmeyer et al. PFCM 2006 Injection of methane into a PSI-II hydrogen plasmas a-C:H layers build up on the heatable wall Erosion by neutral hydrogen Detection of the eroded species with the aid of QMS and collector probes in the pump duct Collector probes for in situ analysis heated
32
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Increasing wall temperature Wall temperature fixed at 180° C Dominant erosion product from the hot wall (180°C) is acetylen (m=26)! PSI-II: C x H y Erosion from a-C:H Layers at Walls QMS in the pump duct:
33
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek PSI-II: Deposition/Erosion in the PSI-II Pump Duct Unheated duct: deposition ( 0.01…0.05 nm/min) along the duct (2 sccm CH 4 ) Heated collector probe: erosion (2 sccm CH 4 ) Erosion by atomic hydrogen Reduced erosion during CH 4 injection Surface temperature is the key parameter for the erosion/deposition switch Bohmeyer et al.
34
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Laboratory experiments (IPP Garching) Nitrogen/hydrogen mixtures Re-deposition of soft a-C:H films after thermal decomposition ….
35
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Redeposition of Soft a-C:H Films after Thermal Decomposition movable tubular oven T max = 1300 K sample position sample position for MBMS Jacob et al. 2005 TESS: Setup
36
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek TESS: Thermal effusion spectra 4 amu : D 2 32 amu : C 2 D 4 & C 2 D 6 18 amu : CD 3 & H 2 O34 amu : C 3 D 8 20 amu : CD 4 46 amu : C 3 D 6 & C 4 D 8 28 amu : C 2 D 2 & CO 2 50 amu : C 4 D 10 & C 5 D 12 Hard a-C:D Soft a-C:D T ramp = 15 K/min - Large contributions from long chain hydrocarbons -High redeposition (~5ß%) Jacob et al. 2005
37
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek QMS Shift of oven causes desorption of material which was redeposited on the walls of the glass tube. Redeposition fraction from integration 41% TESS: Redepositon
38
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek ITER Predictive modelling for ITER with ERO (here: only C)
39
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Chemical erosion yield (D + graphite) along outer target Erosion yield Y Roth : - min(Y Roth ) ~ 0.04% around strike point (high flux) - max(Y Roth ) ~ 0.6% @ T surf = 670°C ITER: Chemical Erosion Yield at the Outer Target
40
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek ITER predictions / ERO no lifetime problem (1mm in 500 ITER discharges) T co-deposition critical for D phase (30 ITER discharges) => not an issue for H phase Influence of Be C erosion reduced by a factor of 2.5 T co-deposition problem remains SEWG ITER-material mix / T retention Present status (Kirschner et al. 2006): Still large uncertainties! Improvements possible! Implementation of new results will help to increase the level of confidence!
41
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Summary Predictions for ITER Data base & Codes: HYDKIN ADAS, TRIM … Code and data base validation: benchmark experiments TEXTOR, AUG, TJ-II … Plasma background B2-Eirene or EDGE2D Tokamak experiments JET, AUG, TEXTOR… ERO modelling Laboratory experiments MAJESTIX … Linear experiments pilot-MAGNUM, PSI-II SEWG meeting in MARCH 2007 at JET!
42
MERO – Matlab GUI for ERO data processing and visualisation
43
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek n e =10 17 m -3 n e =6*10 17 m -3 n e =2*10 18 m -3 PSI-II: C 2 H 4 injection into He-Plasmas CH A-X band gas injection plasma column n e =3*10 17 m -3 gas injection Baudach et al. PFCM 2006 HYDKIN cannot reproduce the short penetration depth for CH in PSI-II. Uncertainties at low electron temperatures!
44
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Plasma Parameters in the Inner and Outer JET Divertor
45
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek Estimations of upper limits of tritium retention: - 0.1% Be: 6.4 mg T/s (350 g after 150 ITER discharges) - 1.0% Be: 15.9 mg T/s (60 ITER discharges) - 1.0% C: 32 mg T/s (30 ITER discharges) Target lifetime seems to be less critical - worst case (0.1% Be): 6900 ITER discharges Open questions: - influence of disruptions and ELMs - carbide formation (Be 2 C) - T content in dependence on surface temperature - T retention in gaps Predictive ERO modelling for ITER: conclusions
46
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek TJ-II: Hydrocarbon Injection Experiments ethylenehydrogen Electron/molecule142 Molec/pulse7 10 18 8.7 10 18 Densityincrease/pulse (total electrons) 1.2 10 18 1.5 10 18 H/molecule42 H increase/pulse (a.u.) 310 H outgas/H in0.100.25 CH/H 50 eV, 2.10 12 cm -3 ) 3 (C 2 H 4 )1 (CH 4 ) Summary Gas Injection
47
EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek EU Plasma-Wall Interaction TF – Meeting 13.-15.11.05 – SFA Ljublijana SEWG Chemical Erosion S. Brezinsek AUG: Plasma Parameters at the Target
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.