Download presentation
Presentation is loading. Please wait.
Published byLogan Douglas Modified over 9 years ago
1
The Two Channel Kondo Effect (The breakdown of the Fermi liquid paradigm in quantum dots: theory and experiment) Department of Condensed Matter Physics Weizmann Institute of Science HRI, 8 Feb 2008
2
Outline Ancient and modern history of the Kondo effect Shot noise of 5/3 in the Kondo limit (theory and experiments) The Fermi liquid and the Non Fermi liquid theories The two-channel Kondo (2CK) theoretical predictions 90 136602 (2003). Experimental observation of the two channel Kondo state 446, 167 – 171 (2007). Summary
3
Resistance of metals at low temp Temperature (K) 10 4 R(T) R(273) 1 23 4 5 26.4 26.5 De Hass, de Bour, de Berg (1934)
4
M. Sarachik et al. 1964 Iron ’ s Concen. in Mo.8 Nb.2 Fe is an example for a 3d transition metals
5
The s-d model FERMI SEA (Conduction band) Local spin of conduction electrons Impurity spin J σS, J>0
6
Kondo Solution Band Width Density of states
7
The Kondo Problem Perturbation theory fails at the Kondo temp. J 2 = J 3 Log(D/T) T K =D e -1/ J What happens below T K ?
8
Developments Scaling and Renormalization Group Exactly solvable points Coulomb Gases Numerical Renormalization Group Bosonization (Schotte and Schotte) Bethe ansatz solution (Andrei, Wiegman- Tsvelik )
9
Kondo Resonance Conduction spin Impurity spin J σS, J>0
10
A universal bound state is formed between the local spin and the conduction electrons Density of states Energy EFEF
11
Fermi-Edge Singularity (FES) FERMI SEA (Conduction band) EFEF EgEg Attraction between valance hole and conduction electrons. Orthogonality “catastrophe” Sudden potential + Many body effects E F +E g Absorption
12
Single Channel Kondo and Many FES Time J σS= J z σ z S z + J - σ + S - + J + σ - S + Density of states Energy EFEF
13
Origin of Spin-Spin interaction The Anderson Model s-d model Electron processes JzσzSzJzσzSz J-σ+S-J-σ+S-
14
Origin of Spin-Spin interaction The Anderson Model s-d model Electron processes Hole processes t- coupling d - impurity level U-charging energy dd U+2 d t
15
Theory: a small quantum dot forms the local impurity state [Ng & Lee, Glazman & Raikh (1988)] Experiments 1CK in a quantum dot
16
Strongly coupled and small dots 1 μm Exp:Yang Ji, M. Heiblum et al. Sci. 290, 779. T K =D e -1/ J J~t 2 /U
17
1998
18
2000
19
In quantum dots we can tune and control many parameters
20
Phase measurements Gerland, Costi, von Delft & Oreg PRL 84, 3710 2000 Exp:Yang Ji, M. Heiblum et al. Sci. 290, 779 2000 0 µV; -4 4 0 µV; -80 µV; -1 1 00 µV Exp: Zafalon, et al. 2007
21
2004
22
Fractional Noise in the Kondo Limit Eran Sela, YO, von Oppen, Koch PRL 2006
23
Nozières FL Hamiltonian αε πνT K ε ε ε ε βnσβnσ πν 2 T K =(1-e 2iδσ )/(2πiν)=-δ σ /πν δσ= δσ= αε TKTK βnσβnσ νTKνTK Elastic part
24
Floating of the Kondo resonance δn δn δε δ σ (ε=0, n=0) = δ σ (δε, n=νδε) δσ= δσ= αεαε TKTK βnσβnσ νTKνTK α=βα=β Keldysh vs FGR
25
Relation of ψ particles to L-R movers Scattering from R L causes backscattering current Both α and β contribute to the backscattering of R L In the unitary limit: no scattering between L and R ψ is free S D Right movers Left movers For symmetric coupling ψ =(L+R)/√2 Long rigorous derivation …
26
α β2β2 β1β1 β2β2 α t α β1β1 β2β2
27
Symmetry breaking effects 1.Left-Right symmetry of the dot 2.SU(2) symmetry (magnetic field) 3.Particle-hole symmetry δθδhδrδθδhδr
28
Nature Physics 2007
29
Fermi Liquid vs. Non Fermi Liquid
30
Fermi Liquid (FL) Concept of quasi particles. 1/(Life time) << Typical energy Fermi Liquid vs. Non Fermi Liquid p F p N(p) 1 S D dI/dV sd Ө= Max[T,V sd ] dI/dV sd Ө=Max[T, V sd ] Non FL Superconductors. Luttinger liquid in 1D. FQHE liquids. Low D systems + interaction + disorder. Multi-channel Kondo. const- Ө 2 const- Ө 1/2
31
J 31 YO and David Goldhaber-Gordon PRL 2003 Lead-1 Lead-2 Lead-3 J 22 J 31 J 13 =J 11 J 33 J 31 J 13 ~V 3 V 1 V 1 V 3 =V 1 V 1 V 3 V 3 ~J 11 J 33 V3V3 V1V1 ECEC E C >T
32
The two channel Kondo Hamiltonian H=Σ ε k i † kα i kα + Σ ε k f † kα f kα J i σ i S+J f σ f S
33
Multi-Channel Kondo RG: (Nozieres – Blandin, Zawadowski). NRG. Bethe Ansatz (Andrei, Wiegmann-Tsvelik) Conformal Field Theory (Affleck - Ludwig) “Pseudo Particle” or “Slave Bosons” (Read - Coleman, Ruckenstein - Cox) Bosonization (Kivelson - Emery) Spin flavor Majorana Fermion
34
2CK fixed point and a local Majorana Total charge ρ i ↑ + ρ i ↓ + ρ f ↑ +ρ f ↓ Total spin ρ i ↑ - ρ i ↓ + ρ f ↑ -ρ f ↓ Flavor ρ i ↑ + ρ i ↓ - ρ f ↑ -ρ f ↓ Spin flavor ρ i ↑ - ρ i ↓ - ρ f ↑ +ρ f ↓ Bosonization a series of rotations and translations Refermionization iΣΨ † sf ∂Ψ sf + J + [Ψ † sf (0) + Ψ sf (0)][S + -S - ] η + ia - iη - a + η=η † {η,η † }=1
35
2-Channel vs. 1-Channel Kondo Specific Heat Conductance Spin Susceptibility Entropy Two ChannelSingle Channel
36
2CK 1CK J finite lead J infinite lead dI/dV Θ J=JJ=J J>JJ>J J<JJ<J
37
Observation of the two channel Kondo effect R. M. Potok, I. G. Rau, Hadas Shtrikman, Yuval Oreg and D. Goldhaber-Gordon Nature 446, 167 – 171 (2007). S D 1μm1μm c
38
g(e 2 /h)
39
dI/dV Θ J>JJ>J J<JJ<J g(0,T)-g(V sd,T) T α
40
J≈JJ≈J Scaling exponent and Scaling function A new metallic state of matter was observed
42
What is the effect of magnetic field ( Kikoin and YO PRB submitted )? What is the shot noise ( 1CK Sela, YO, et al. PRL 2006 ), 2CK? What happens when the temperature is smaller than the level spacing in the finite reservoir. Can we have more channels? Can we design novel many body states leading to a new comprehension of strongly correlated systems? Summary and F.A.Q.
43
Magnetic field induced two-channel Kondo effect in multiple quantum dots Kikoin & YO
44
T K2 vs. T K1 T K2 E c
45
A simple realization of MCK YO and David Goldhaber-Gordon (PRL 2003) d N-1 N 2 1 Pistil: small dot Petal: large dots or leads l
46
Due to correlations induced by the screening cloud sometimes two electrons are scattered in pairs leading to an “effective charge of 5/3”. Ask Eran Sela.
47
Suggestions for 2CK Realizations Two level systems, “spins are isotropic channels” Coulomb blockade peak is a degenerate state Quadruple 2CK ( Cox ) Non equilibrium ( Wen ) Luttinger leads ( Kim ) Theo: Zawadowski, von Delft et al, Exp: Dan Ralph and Burman. The. Matveev et al. (Requires a large dot, and smooth contacts) Exp. Devoret et al. Hard in real systems. Schiller et al. Average level spacing Kondo temp. Charging energy Lead-Dot Coupling const ~100 Publications/attempts to realize MCK
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.