Download presentation
Presentation is loading. Please wait.
Published byTamsin Dixon Modified over 9 years ago
1
Chapter 9 Molecular Geometry and Bonding Theories
2
Valence Shell Electron Pair Repulsion (VSEPR) Theory based on idea that regions of electron density in valence shell of central atom will be distributed in space such that electrostatic repulsions are minimizedbased on idea that regions of electron density in valence shell of central atom will be distributed in space such that electrostatic repulsions are minimized places regions of electron density as far apart as possibleplaces regions of electron density as far apart as possible produces molecular geometryproduces molecular geometry
3
Steps in Predicting Molecular Geometry draw Lewis structure of substancedraw Lewis structure of substance count regions of electron density on central atomcount regions of electron density on central atom draw electron pair shapedraw electron pair shape derive and draw molecular geometryderive and draw molecular geometry
4
Regions of Electron Density single covalent bondsingle covalent bond double covalent bonddouble covalent bond triple covalent bondtriple covalent bond lone pairlone pair unpaired electronunpaired electron
5
# Regions Shape 2linear 180°
6
Shape 2 3 linear trigonal planar 180° 120°
7
# Regions Shape 2 3 linear trigonal planar 4tetrahedral 180° 120° 109.5°
8
5 trigonal bypyramidal 90° 120°
9
5 6 octahedral 90° 90° 120°
10
Examples Determine the electron-pair and molecular geometries of each of the following. Draw and name each.
11
Beryllium Chloride
12
BeCl 2
13
Beryllium Chloride BeCl 2 1. Lewis structure
14
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl
15
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl 2. Count regions of electron density on central atom central atom
16
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl 2. Count regions of electron density on central atom central atom 2
17
Beryllium Chloride BeCl 2 1. Lewis structure Cl Be Cl 2. Count regions of electron density on central atom central atom 2 3. Draw and name electron-pair shape Cl Be Cl linear
18
Beryllium Chloride BeCl 2 3. Draw and name electron-pair shape Cl Be Cl linear 3. Derive and name molecular shape Cl Be Cl linear
19
Carbon Dioxide
20
CO 2
21
Carbon Dioxide CO 2 O C O
22
Carbon Dioxide CO 2 O C O 2 regions
23
Carbon Dioxide CO 2 O C O 2 regions Electron-pair shape, linear O C O
24
Carbon Dioxide CO 2 O C O 2 regions Electron-pair shape, linear O C O Molecular shape, linear O C O
25
Aluminum Bromide
26
AlBr 3
27
Aluminum Bromide AlBr 3 Al Br Br Br
28
Aluminum Bromide AlBr 3 Al Br Br Br 3 regions
29
Aluminum Bromide AlBr 3 Al Br Br Br 3 regions Electron-pair shape trigonal planar Al Br Br Br
30
Aluminum Bromide AlBr 3 Al Br Br Br 3 regions Electron-pair shape trigonal planar Al Br Br Br Molecular shape trigonal planar Al Br Br Br
31
Nitrite Ion
32
NO 2 –
33
Nitrite Ion NO 2 – ONO –
34
Nitrite Ion NO 2 – ONO – 3 regions
35
Nitrite Ion NO 2 – ONO – 3 regions Electron-pair shape trigonal planar N O O –
36
Nitrite Ion NO 2 – ONO – 3 regions Electron-pair shape trigonal planar N O O –
37
Nitrite Ion NO 2 – ONO – 3 regions Electron-pair shape trigonal planar N O O – Molecular shape bent bent N O O –
38
Carbon Tetrabromide
39
CBr 4
40
Carbon Tetrabromide CBr 4 C Br Br Br Br
41
Carbon Tetrabromide CBr 4 C Br Br Br Br 4 regions
42
Carbon Tetrabromide CBr 4 C Br Br Br Br 4 regions Electron-pair shape tetrahedral C Br Br Br Br
43
Carbon Tetrabromide CBr 4 C Br Br Br Br 4 regions Electron-pair shape tetrahedral C Br Br Br Br Molecular shape tetrahedral
44
Arsine
45
Arsine AsH 3
46
Arsine As H H H
47
Arsine As H H H 4 regions electron-pair shape, tetrahedral
48
Arsine AsH 3 As H H H 4 regions electron-pair shape, tetrahedral As H H H
49
Arsine AsH 3 As H H H 4 regions electron-pair shape, tetrahedral As H H H molecular shape trigonal pyramid or tripod
50
Arsine AsH 3 As H H H 4 regions electron-pair shape, tetrahedral As H H H molecular shape trigonal pyramid or tripod As H H H
51
Water H2OH2OH2OH2O
52
Water H2OH2OH2OH2O O HH
53
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral
54
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral O HH
55
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral O HH molecular shape bent
56
Water H2OH2OH2OH2O O HH 4 regions electron-pair shape tetrahedral O HH molecular shape bent O HH
57
Phosphorus Pentafluoride
58
PF 5 P F F F F F
59
Phosphorus Pentafluoride PF 5 P F F F F F 5 regions electron-pair shape trigonal bipyramidal F F F F F P
60
Phosphorus Pentafluoride PF 5 P F F F F F 5 regions electron-pair shape trigonal bipyramidal F F F F F P molecular shape trigonal bipyramidal
61
Sulfur Tetrafluoride
62
SF 4
63
Sulfur Tetrafluoride SF 4 S F F F F
64
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal
65
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal F F F F S
66
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal F F F F S F F F F S molecular shape distorted tetrahedral
67
Sulfur Tetrafluoride SF 4 S F F F F 5 regions trigonal bipyramidal F F F F S molecular shape see saw S F F F F
68
Chlorine Trifluoride
69
ClF 3
70
Chlorine Trifluoride ClF 3 F F F Cl
71
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal
72
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal Cl F F F
73
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal Cl F F F
74
Chlorine Trifluoride ClF 3 F F F Cl 5 regions electron-pair shape trigonal bipyramidal Cl F F F molecular shape T-shape Cl F F F
75
Sulfur Hexafluoride
76
SF 6
77
Sulfur Hexafluoride SF 6 S F F F F F F
78
Sulfur Hexafluoride SF 6 S F F F F F F 6 regions electron-pair shape octahedral S F F F F F F
79
Sulfur Hexafluoride SF 6 S F F F F F F 6 regions electron-pair shape octahedral S F F F F F F molecular shape octahedral
80
Bromine Pentafluoride
81
BrF 5
82
Bromine Pentafluoride BrF 5 Br F F F F F
83
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral
84
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral Br F F F F F
85
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral Br F F F F F
86
Bromine Pentafluoride BrF 5 Br F F F F F 6 regions electron-pair shape octahedral Br F F F F F molecular shape square pyramidal Br F F F F F
87
Xenon Tetrafluoride
88
XeF 4
89
Xenon Tetrafluoride XeF 4 Xe F F F F
90
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral
91
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral Xe F F F F
92
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral Xe F F F F
93
Xenon Tetrafluoride XeF 4 Xe F F F F 6 regions electron-pair shape octahedral Xe F F F F Xe F F F F molecular shape square planar
94
Tribromide Ion Br 3 – Br 3 –
95
Tribromide Ion Br 3 – Br 3 – Br Br Br
96
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal
97
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal Br Br Br
98
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal Br Br Br
99
Tribromide Ion Br 3 – Br 3 – Br Br Br 5 regions electron-pair shape trigonal bipyramidal Br Br Br molecular shape linear Br Br Br
100
Polarity of Molecules molecules in which dipole moments of the bonds do not cancel are polar moleculesmolecules in which dipole moments of the bonds do not cancel are polar molecules molecules that do not contain polar bonds or in which all dipole moments cancel are non-polar moleculesmolecules that do not contain polar bonds or in which all dipole moments cancel are non-polar molecules
101
CO 2 vs H 2 O C O O O H H
102
C O O O H H + – + –
103
CO 2 vs H 2 O C O O O H H + – + –
104
CO 2 vs H 2 O C O O O H H + – + – 0
105
CO 2 vs H 2 O C O O O H H + – + – 0
106
CO 2 vs H 2 O C O O O H H + – + – 0yx yx
107
CO 2 vs H 2 O C O O O H H + – + – yx y x
108
CO 2 vs H 2 O C O O O H H + – + – nonpolar polar
109
Study and Know 9.2 Polarity of Molecules
110
VSEPR Theory only explains molecular shapes says nothing about bonding in molecules Enter Valence Bond (VB) Theory atoms share electron pairs by allowing their atomic orbitals to overlap
111
+ H H
112
+ H H bond
113
+ H H 1s E H
114
+ H H 1s E H H
115
+ F F F2F2F2F2
116
+ F F F2F2F2F2
117
1s 2s 2p E F
118
1s 2s 2p F E F
119
Methane CH 4 1s 2s 2p E C
120
Methane 1s 2s 2p E C H H
121
Methane 1s 2s 2p E C H H H+H+H+H+
122
Methane 1s 2s 2p E C H H H+H+H+H+ H–H–H–H–
123
Methane 1s 2s 2p E C H H H+H+H+H+ H–H–H–H– C H H H H 90° 90°
124
Methane C H H H H 109.5° Tetrahedral Geometry 4 Identical Bonds 4 Identical Bonds
125
Problem and Solution C must have 4 identical orbitals in valence shell for bonding solution: hybridization
126
Methane CH 4 1s 2s 2p E
127
Methane 1s 2s 2p E 1s 2s 2p E
128
Methane 1s 2s 2p E 1s 2s 2p E
129
Methane 1s 2s 2p E 1s 2s 2p E
130
Methane 1s 2s 2p E 1s E sp 3
131
– + + + 2p 2s
132
– + + + = 2p 2s an sp 3 hybrid orbital
133
4 identical sp 3 hybrid orbitals
134
tetrahedral geometry
135
4 identical sp 3 hybrid orbitals tetrahedral geometry
136
4 identical sp 3 hybrid orbitals tetrahedral geometry
137
Methane CH 4 1s 2s 2p E 1s E sp 3 H H H H
138
Hybridization vs Shape (e – pair) sp linearsp linear sp 2 trigonal planarsp 2 trigonal planar sp 3 tetrahedralsp 3 tetrahedral sp 3 d trigonal bipyramidalsp 3 d trigonal bipyramidal sp 3 d 2 octahedralsp 3 d 2 octahedral
139
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion
140
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 –
141
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 – Br Br Br 5 regions electron-pair shape trigonal bypyramidal
142
Predict the Hybridization of the Central Atom in tribromide ion in tribromide ion Br 3 – Br Br Br 5 regions electron-pair shape trigonal bypyramidal sp 3 d
143
Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2
144
Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2 O C O 2 regions Electron-pair shape, linear
145
Predict the Hybridization of the Central Atom in carbon dioxide in carbon dioxide CO 2 O C O 2 regions Electron-pair shape, linear sp
146
Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide
147
Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide Al Br Br Br 3 regions Electron-pair shape trigonal planar
148
Predict the Hybridization of the Central Atom in aluminum bromide in aluminum bromide Al Br Br Br 3 regions Electron-pair shape trigonal planar sp 2
149
Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride
150
Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride Xe F F F F 6 regions electron-pair shape octahedral
151
Predict the Hybridization of the Central Atom in xenon tetrafluoride in xenon tetrafluoride Xe F F F F 6 regions electron-pair shape octahedral sp 3 d 2
152
Consider Ethylene, C 2 H 4
153
C C H H H H
154
C C H H H H 3 regions trigonal planar
155
Consider Ethylene, C 2 H 4 C C H H H H 3 regions trigonal planar sp 2
156
Consider Ethylene, C 2 H 4 C C H H H H 3 regions trigonal planar sp 2
157
1s 2s 2p E
158
1s 2s 2p E 1s 2s 2p E
159
1s 2s 2p E 1s 2p E
160
2p
161
2p
164
bond framework
167
bond
169
Consider Acetylene, C 2 H 2 C C H H
170
C C H H 2 regions linear
171
Consider Acetylene, C 2 H 2 C C H H 2 regions linear sp
172
Consider Acetylene, C 2 H 2 C C H H 2 regions linear sp
173
1s 2s 2p E 1s 2s 2p E
174
1s 2s 2p E 1s sp 2p E
175
sp sp 2p 2p
177
bond framework
179
bonds
181
Generally single bond is a bondsingle bond is a bond double bond consists of 1 and 1 bonddouble bond consists of 1 and 1 bond triple bond consists of 1 and 2 bondstriple bond consists of 1 and 2 bonds
182
Molecular Orbital (MO) Theory when atoms combine to form molecules, atomic orbitals overlap and are then combined to form molecular orbitals orbitals are conserved a molecular orbital is an orbital associated with more than 1 nucleus like any other orbital, an MO can hold 2 electrons consider hydrogen atoms bonding to form H 2
183
+ H H
184
add subtract
185
add subtract bonding antibonding
186
add subtract bonding antibonding * 1s 1s
187
1s 1s * 1s H H H2H2H2H2 E E
188
1s 1s 1s * 1s H H H2H2H2H2 E E
189
1s 1s 1s * 1s H H H2H2H2H2 E E
190
1s 1s 1s * 1s H H H2H2H2H2 E E
191
1s 1s 1s * 1s H H H2H2H2H2 E E ( 1s ) 2
192
1s 1s 1s * 1s H H H2H2H2H2 E E ( 1s ) 2 total spin = 0
193
Diamagnetic: slightly repelled by a magnetic fieldDiamagnetic: slightly repelled by a magnetic field total spin = 0 paramagnetic: attracted to a magnetic fielsparamagnetic: attracted to a magnetic fiels total spin not 0 Bond Order = 1/2 (bonding e – – antibonding e – )Bond Order = 1/2 (bonding e – – antibonding e – )
194
1s 1s 1s * 1s H H H2H2H2H2 E E ( 1s ) 2 total spin = 0 diamagnetic
195
1s 1s 1s * 1s H H H2H2H2H2 E E BO = 1/2 ( 2 – 0) = 1
196
Consider He 2
197
1s 1s 1s * 1s He He He 2 E E
198
1s 1s 1s * 1s He He He 2 E E
199
1s 1s 1s * 1s He He He 2 E E ( 1s ) 2 ( * 1s ) 2
200
1s 1s 1s * 1s He He He 2 E E diamagnetic
201
1s 1s 1s * 1s He He He 2 E E BO = 1/2 ( 2 – 2 ) = 0
202
Combination of p Atomic Orbitals
203
2p 2p
204
subtract add
205
bonding MO antibonding MO subtract add
206
bonding MO antibonding MO * 2p 2p subtract add
207
2p 2p
208
subtract add
209
antibonding MO bonding MO subtract add
210
2p * 2p subtract add
211
2p * 2p subtract add
212
Consider Li 2
213
2s 2s 2s * 2s Li Li Li 2 E E 2p 2p * 2p 2p 2p * 2p
214
2s 2s 2s * 2s Li Li Li 2 E E 2p 2p * 2p 2p 2p * 2p
215
2s 2s 2s * 2s Be Be Be 2 E E 2p 2p * 2p 2p 2p * 2p
216
2s 2s 2s * 2s Be Be Be 2 E E 2p 2p * 2p 2p 2p * 2p
217
2s 2s 2s * 2s B B B2B2B2B2 E E 2p 2p * 2p 2p 2p * 2p
218
2s 2s 2s * 2s B B B2B2B2B2 E E 2p 2p * 2p 2p 2p * 2p
219
2s 2s 2s * 2s C C C2C2C2C2 E E 2p 2p * 2p 2p 2p * 2p
220
2s 2s 2s * 2s N N N2N2N2N2 E E 2p 2p * 2p 2p 2p * 2p
221
2s 2s 2s * 2s O O O2O2O2O2 E E 2p 2p * 2p 2p 2p * 2p
222
2s 2s 2s * 2s F F F2F2F2F2 E E 2p 2p * 2p 2p 2p * 2p
223
2s 2s 2s * 2s Ne Ne Ne 2 E E 2p 2p * 2p 2p 2p * 2p
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.