Download presentation
Presentation is loading. Please wait.
1
Solid Geometry
2
Three Dimensions Solid Geometry is the geometry of three-dimensional space It is called three-dimensional, or 3D because there are three dimensions: width, depth and height.
3
Polyhedron A geometric object with flat faces and straight edges.
each face is a polygon.
4
Polyhedron FACE: Polygon shaped sides of a polyhedron
EDGE: Line segment formed by intersection of two faces VERTEX: Point where three or more edges meet
5
Base The surface that a solid object stands on
or the bottom line of a shape such as a triangle or rectangle.
6
Polyhedron Just like a 2D polygon a Polyhedron can be regular
7
Polyhedron …or Irregular
8
Polyhedron A Polyhedron can also be semi-Regular
9
Polyhedron Just like a 2D polygon, a polyhedron can be convex
10
Polyhedron …or concave
11
Prism A solid object that has two identical bases and all flat sides.
The shape of the bases give the prism it’s name "triangular prism“ It is a polyhedron.
12
Pyramid A solid object where: * The base is a polygon (a straight-sided shape) * The sides are triangles which meet at the top (the apex). It is a polyhedron.
13
Cylinder A cylinder is a solid object with:
* two identical flat circular (or elliptical) ends * and one curved side.
14
Cone A solid (3-dimensional) object that has a circular base
and one vertex
15
Sphere A solid (3-dimensional) object that has one curved side
16
Prisms & Pyramids Triangular Prism Rectangular Prism Cube
Type Examples Properties Triangular Prism ● 5 faces 2 triangular bases 3 rectangular faces ● 9 edges ● 6 vertices Rectangular Prism 6 faces 2 rectangular bases 4 rectangular faces ● 12 edges ● 8 vertices Cube ● 6 faces 2 square bases 4 square faces Square Pyramid 1 square base 4 triangular faces ● 8 edges ● 5 vertices Triangular Pyramid ● 4 faces 1 triangular base 3 triangular faces ● 6 edges ● 4 vertices
17
Three Dimensional Figures with Curved Surfaces
Type Example Properties Cylinder ● 2 circular bases ● 1 curved surface Cone ● 1 circular base ● 1 vertex Sphere
18
VOLUME
19
Prism V=Bh B: Area of the base h: height/length of the prism
20
Prism V=Bh V= (Area of Triangle) * h V= (½bh) * h V= (½*19*24) *47
V= 10,716 cm3
21
Prism V=Bh V= (Area of Rect.) * h V= (bh) * h V= (2 * 3) * 6 V=(6) * 6
V= 36 ft3
22
Cylinder V=Bh B: Area of the base h: height/length of the prism
23
Cylinder V=Bh V= (Area of Circle) * h V= (πr2) * h V= (π * 32) *10
V= cm3
24
Cylinder V=Bh V= (Area of Circle) * h V= (πr2) * h V= (π * 52) *21
V= 1,648.5 ft3
25
Pyramid V=1/3Bh B: Area of the base h: height/length of the prism
26
Pyramid V=1/3Bh V= 1/3(Area of Tri.) * h V= 1/3 * (½bh) * h
V= 20 cm3
27
Pyramid V=1/3Bh V= 1/3(Area of Sq.) * h V= 1/3 * (b * h) * h
V= 250/3 units3
28
Cone V=1/3Bh B: Area of the base h: height/length of the prism
29
Cone V=1/3Bh V= 1/3(Area of Circle)* h V= 1/3(πr2) * h
V= in3
30
Cone V=1/3Bh V= 1/3(Area of Circle)* h V= 1/3(πr2) * h
V= 1, cm3
31
Sphere V=4/3 πr3
32
Sphere V=4/3 πr3 V= 4/3 πr3 V= 4/3 * π * 143 V= 4/3 * π * 2744
V= 11, cm3
33
Sphere V=4/3 πr3 V= 4/3 πr3 V= 4/3 * π * 33 V= 4/3 * π * 27
V= cm3
34
SURFACE AREA
35
Surface Area The sum of the area of the bases and lateral surfaces
36
Right Prism SA=2B+Ph B: Area of the base P: Perimeter of a base
h: height/length of the prism
37
Right Prism SA=2B+Ph SA=2(Area of Rect.)+Ph SA= 2(bh) + Ph
SA= 62 cm2
38
Right Prism SA=2B+Ph SA=2(Area of Tri.)+Ph SA= 2(1/2bh) + Ph
(3+8+√73)7 SA=2(12) + (11+√73)5 SA= √73 SA= √73 m2 SA = m2 SA=2B+Ph
39
Right Cylinder SA=2B+Ch B: Area of the base C: Circumference of a base
h: height/length of the cylinder
40
Right Cylinder SA=2B+Ch SA=2(Area of Circ.)+Ch SA= 2(πr2) + (2πr)h
SA= cm2
41
Right Cylinder SA=2B+Ch SA=2(Area of Circ.)+Ch SA= 2(πr2) + (2πr)h
SA= cm2
42
Right Pyramid SA=B + ½Ps B: Area of the base P: Perimeter of a base
s: slant height of the lateral side
43
Right Pyramid (& Cone) What is “slant height”?
44
Right Pyramid SA=B + ½Ps SA=(Area of Rect.)+½Ps SA= (bh) + ½Ps
SA= units2
45
Right Pyramid SA=B + ½Ps SA=(Area of Rect.)+½Ps SA= (bh) + ½Ps
SA= 602 in2 10 in
46
Right Cone SA=B + ½Cs B: Area of the base P: Circumference of a base
s: slant height of the lateral side
47
Right Cone SA=B + ½Cs SA=(Area of Circ.)+½Cs SA= (πr2) + ½(2πr)s
SA= in2
48
Right Cone SA=B + ½Cs SA=(Area of Circ.)+½Cs SA= (πr2) + ½(2πr)s
SA= 4.9 ft2
49
Sphere SA=4πr2 r: radius
50
Sphere SA=4πr2 SA= 4πr2 SA= 4*π*42 SA= 4*π*16 SA= 64π
SA= units2
51
Sphere SA=4πr2 SA= 4πr2 SA= 4*π*322 SA= 4*π*1024 SA= 4096π
SA= 12, units2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.