Download presentation
Presentation is loading. Please wait.
Published byFelicia Warren Modified over 9 years ago
1
Nuclear-Physics far from Stability r-Process Nucleosynthesis
and r-Process Nucleosynthesis Karl-Ludwig Kratz - Institut für Kernchemie, Univ. Mainz, Germany - HGF VISTARS, Germany - Department Of Physics, Univ. of Notre Dame, USA Hirschegg XXXIV ‘06
2
r-process observables
Historically, nuclear astrophysics has always been concerned with interpretation of the origin of the chemical elements from astrophysical and cosmochemical observations, description in terms of specific nucleosynthesis processes (already B²FH, 1957). Solar system isotopic abundances, Nr, T9=1.35; nn= , Bi r-process observables CS abundances scaled solar r-process ALLENDE INCLUSION EK-1-4-1 isotopic composition Ca, Ti, Cr, Zr, Mo, Ru, Nd, Sm, Dy ↷ r-enhanced scaled theoretical solar r-process Zr Pt Ru Cd Ba Os Pb Sr Sn Nd d [‰] Ga Mo Pd Dy Ge Gd Ce Sm Er Yb Ir Y Rh Hf Nb Ag La Eu Ho Pr Tb Au Lu Tm Th U Mass number Elemental abundances in UMP halo stars Hirschegg XXXIV ‘06 “FUN-anomalies” in meteoritic samples
3
Nuclear-data needs for the classical r-process
nuclear masses Sn-values ↷ r-process path Qb, Sn-values ↷ theoretical b-decay properties, n-capture rates b-decay properties T1/2 ↷ r-process progenitor abundances, Nr,prog Pn ↷ smoothing Nr,prog Nr,final (Nr,) b-decay freeze-out n-capture rates sRC + sDC ↷ smoothing Nr,prog during freeze-out nuclear structure development extrapolation into unknown regions fission modes SF, bdf, n- and n-induced fission ↷ “fission (re-) cycling”; r-chronometers Hirschegg XXXIV ‘06
4
History and progress in measuring r-process nuclei
Definition: r-process isotopes lying in the process path at freeze-out ↷ when r-process falls out of (n,g)-(g,n) equilibrium even-neutron isotopes ↷ “waiting points” important nuclear-physics property T1/2 odd-neutron isotopes ↷ connecting the waiting points important nuclear-physics property Sn sn.g In 1986 a new r-process astrophysics era started: at the ISOL facilities OSIRIS, TRISTAN and SC-ISOLDE T1/2 of N=50 “waiting-point” isotope 80Zn50 (top of A80 Nr, peak) T1/2 of N=82 “waiting-point” isotope 130Cd82 (top of A130 Nr, peak) In 2006, altogether more than 50 r-process nuclei have been measured (at least) via their T1/2, which lie in the process path at freeze-out. These r-process isotopes range from 68Fe to 139Sb. The large majority of these exotic nuclei was identified at CERN/ISOLDE via the decay mode of b–delayed neutron emission. (see talk O. Arndt) Hirschegg XXXIV ‘06
5
Snapshots: r-process paths for different neutron densities
Ba Cs Xe heaviest isotopes with measured T1/2 I Te Sb Sn In Cd Ag Pd g9/2 Rh Ru Tc Mo Nb Zr p1/2 Y Sr Rb p3/2 Kr Br Se As f5/2 Ge Ga Zn Cu Ni Co f7/2 Fe Z g9/2 d5/2 s1/2 g7/2 d3/2 h11/2 N Hirschegg XXXIV ‘06
6
r-Process path for nn=1020 nn=1020
Ba Cs Xe I Te Sb Sn In Cd Ag Pd Rh Ru Tc Mo Nb Zr Y Sr Rb Kr Br Se As Ge Ga Zn Cu Ni Co Fe Z „waiting-point“ isotopes at nn=1020 freeze-out N Hirschegg XXXIV ‘06
7
r-Process paths for nn=1020 and 1023
Ba Cs Xe I Te Sb Sn In Cd Ag Pd Rh Ru Tc Mo nn=1023 Nb Zr Y Sr Rb Kr Br Se As Ge Ga Zn Cu Ni Co Fe Z „waiting-point“ isotopes at nn=1023 freeze-out N (T1/2 exp. : 28Ni – 31Ga, 36Kr, 37Rb,47Ag – 51Sb) Hirschegg XXXIV ‘06
8
r-Process paths for nn=1020, 1023 and 1026
Ba Cs Xe I Te Sb Sn In Cd Ag Pd Rh Ru Tc Mo nn=1023 Nb Zr Y Sr Rb Kr Br nn=1026 Se As Ge Ga Zn Cu Ni Co Fe Z „waiting-point“ isotopes at nn=1026 freeze-out N (T1/2 exp. : 28Ni, 29Cu, 47Ag – 50Sn) Hirschegg XXXIV ‘06
9
b-Decay properties T1/2, Pn gross b-strength properties from theoretical models, e.g. QRPA in comparison with experiments. Requests: (I) prediction / reproduction of correct experimental “number” (II) detailed nuclear-structure understanding ↷ full spectroscopy of “key” isotopes, like 80Zn50 , 130Cd82. Total Error = 3.73 Total Error = 5.54 Half-lives Pn-Values QRPA (GT) QRPA (GT) QRPA (GT+ff) QRPA (GT+ff) (P. Möller et al., PR C67, (2003)) Total Error = 3.08 Total Error = 3.52 Hirschegg XXXIV ‘06
10
Effects of T1/2 on r-process matter flow
T1/2 (GT + ff) Mass model: ETFSI-Q all astro-parameters kept constant r-process model: “waiting-point approximation“ T1/2 x 3 T1/2 : 3 r-matter flow too slow r-matter flow too fast Hirschegg XXXIV ‘06
11
Nuclear masses Over the years, development of
various types of mass models / formulas: Weizsäcker formula Local mass formulas (e.g. Garvey-Kelson; NpNn) Global approaches (e.g. Duflo-Zuker; KUTY) Macroscopic-microscopic models (e.g. FRDM, ETFSI) Microscopic models (e.g. RMF; HFB) Comparison to NUBASE (2001) // (2003) FRDM (1992) srms = // [MeV] ETF-Q (1996) srms = // [MeV] HFB-2 (2002) srms = [MeV] HFB-3 (2003) srms = [MeV] HFB-4 (2003) srms = [MeV] HFB-8 (2004) srms = [MeV] HFB-9 (2005) srms = [MeV] HFB-12 (2005) srms = ? No improvement of srms J. Rikovska Stone, J. Phys. G: Nucl. Part. Phys. 31 (2005) Main deficiencies at Nmagic ! D. Lunney et al., Rev. Mod. Phys. 75, No. 3 (2003) Hirschegg XXXIV ‘06
12
The N=82 shell gap as a function of Z (1)
The N=82 shell closure dominates the matter flow of the „main“ r-process (nn≥1023). Definition „shell gap“: S2n(82) – S2n(84) ↷ paired neutrons. Therefore request: experimental masses and reliable model predictions for the respective N=82 waiting-point nuclei 125Tc to 131In FRDM DZ Groote EFTSI-Q HFB-2 HFB-8 HFB-9 Exp A≈130 Nr, peak RESERVE Achtung farbe—kommt gruen gut raus bei der praesentation Etfsi-q schwarz ganze linie; DZ schwarz gestrichelt ebesno HFB-9 and HFB2 Abbildung aus cgs 12 proceedings;; kombination aus folie 11 and 12 mit gleichen modellen Hirschegg XXXIV ‘06
13
The N=82 shell gap as a function of Z (2)
Definition „shell gap“: S2n(81) – S2n(83) ↷ unpaired neutrons. Large odd-even Z staggering for „microscopic“ HFB models ‼ HFB-9 FRDM FRDM EFTSI-Q DZ Groote RESERVE Auch hier hellblau und gruen ersetzen durch schrze ganz/gestrichelt Exp Exp HFB-8 HFB-2 Hirschegg XXXIV ‘06
14
Effects of nuclear masses on Nr, fits
T1/2+Pn and all astro-parameters kept constant ! Bei hfb 8 im massembereich 180 einfaerben, bei allen gelb durch giftgruen ersezten siehe folie zuvor… Hirschegg XXXIV ‘06
15
From classical to high-entropy wind model
SO FAR, site-independent parameter study within classical Waiting-Point Model understand effects of nuclear-physics input on Nr,calc NOW, more realistic r-process model High-Entropy Wind of SN II “best” nuclear-physics input full dynamical network start with a-process charged-particle freeze-out n-rich seed beyond N=50 (94Kr, 100Sr,…) for subsequent r-process avoids N=50 “bottle neck” in classical model ! Three main parameters: electron abundance Ye = Yp = 1 – Yn radiation entropy S ~ T³·r expansion speed vexp process durations ta and tr Hirschegg XXXIV ‘06
16
Main results of dynamical r-process calculations
Conditions for successful r-process (even for Ye=0.49!) „strength“ formula Due to improved nuclear-physics input max. S=280 (for Ye=0.45) Total process duration up to Th, U tr=465 ms leaves time for fission recycling Freeze-out effects (late non-equilibrium phase) negligible up to A=130 peak important for REE „pygmy“ peak and A=195 peak Separate fits of Nr, peaks Fit of total Nr, abundance pattern Application to Th, U r-chronometers Hirschegg XXXIV ‘06
17
Synthesizing selected mass region
Superposition of individual S-components Pb Th U Hirschegg XXXIV ‘06
18
Basis for detailed astrophysical parameter studies
Superposition of 5 S-sequences to reproduce the Nr, pattern (100<A<240) N=50 N=82 N=126 Th, U r-process chronometers „weak“ r-process (Thesis K. Farouqi, 2005 ) Basis for detailed astrophysical parameter studies Hirschegg XXXIV ‘06
19
Calculated r-process abundances as function of neutron densities
(K.-L. Kratz, B. Pfeiffer, 2005) Hirschegg XXXIV ‘06
20
Abundance predictions as function of nn
“weak” “main” “weak” “main” r-process computations for selected elements r-process computations for selected isotopes Hirschegg XXXIV ‘06
21
r-Process elemental abundances
“weak” r-process (see talk F. Montes) “main” r-process Solar system Simmerer et al., 2004 CS Sneden et al., 2003 Hirschegg XXXIV ‘06
22
Conclusion Nuclear-physics data for r-process calculations
still unsatisfactory ! better global models for all nuclear shapes (spherical, prolate, oblate, triaxial, tetrahedral,…) and all nuclear types (even-even, even-odd, odd-even , odd-odd) more measurements masses ! gross b-decay properties fission properties full spectroscopy of selected “key“ waiting-point isotopes Hirschegg XXXIV ‘06
23
≈ ≈ ≈ ≈ Example “future“ GSI experiment 78Ni50 78Ni50 28 28 78Cu49 29
Full understanding of shell structure of “key isotope“ 78Ni Mass measurement ↷ Qb, Sn T1/2 + Pn, sng g-spectroscopy ↷ Eℓ and log(ft) of np1/2pp3/ T1/2 Eℓ and log(ft) of ng9/2pg9/ Pn pn interaction ms ms Folded - Yukawa Woods - Saxon 78Ni50 Q = ± 1.17 MeV (Audi ´03) 78Ni50 28 Lipkin - Nogami 28 Lipkin - Nogami ≈ 9.6% 3.5 1+ nf5/2 pf7/2 6.93 12.8% 1+ nf5/2 pf5/2 6.34 ≈ 45.7% 1+ ng9/2 pg9/2 5.46 1+ ng9/2 pg9/2 51.1% 4.97 6.6% 1+ nf5/2 pf7/2 Sn= 4.24±0.57 MeV 1+ ng9/2 pg9/2 4.23 3.6% 4.35 5.4% 1+ nf5/2 pf7/2 3.95 0.5% 1+ nf5/2 pf7/2 3.65 1+ nf5/2 pf7/2 3.4% 1+ np1/2 pp3/2 3.00 32.3% 2.76 1+ np1/2 pp3/2 27.9% ≈ 2.48 ≈ ng9/2 pp3/2 ng9/2 pp3/2 78Cu49 29 78Cu49 29 Hirschegg XXXIV ‘06
24
… as an example for long “diffusion time”
from KCh Mainz → GSI Darmstadt from experimentalist → theoretician Hirschegg XXXIV ‘06
25
… How were the heavy elements
Among the … Eleven Greatest Unanswered Questions of Physics (Discover Magazine, 2002) “After the discovery of “antimatter” and “dark matter”, we have recently found the existence of “doesn’t matter”, which seems to have no effect on the Universe whatsoever.” … How were the heavy elements from Fe to U made? Hirschegg XXXIV ‘06
26
Nuclear physics in the r-process
Fission rates and distributions: n-induced spontaneous b-delayed b-delayed n-emission branchings (final abundances) b-decay half-lives (progenitor abundances, process speed) Neutron-capture rates for A> in slow freeze-out for A<130 maybe in a “weak” r-process ? Note: how far down one needs T12/masses on n-rich nuclei depends on seed this is experimental and theoretical challenge !! n-physics ? Seed production rates (aaa,aan, a2n, ..) Masses (Sn) (location of the path) Hirschegg XXXIV ‘06
27
Motivation: N/Z R - abundances Nuclear structure
g 9/2 i 13/2 p 1/2 f 5/2 3/2 7/2 h 11/2 d s ;f N/Z 112 70 40 50 82 126 ) w h of 7.0 Units ( 6.5 Energies 6.0 5.5 Single – Neutron 5.0 FK²L (Ap.J. 403 ; 1993) “..the calculated r-abundance ‘hole‘ in the A 120 region reflects ... the weakening of the shell strength ... below “ 100% 70% 40% 10% 132Sn Strength of ℓ 2 -Term B. Pfeiffer et al., Acta Phys. Polon. B27 (1996) Hirschegg XXXIV ‘06
28
Nuclear-Physics Input
from “internally consistent“ models, with local improvements. Waiting-point approximation requires Sn defines r-process path (Saha equ.) T½ determines progenitor abundances (Nr,prog) Pxn smoothens Nr,prog Nr, Start with input for Nuclear-Mass Model FRDM, ETFSI-Q, HFB-2,... macroscopic microscopic finite-range folded Yukawa droplet single particle Q, Sn, 2, s.p. wave fcts. Shell Model QRPA(global), OXBASH, ANTOINE,... Gamow-Teller strength functions T½, Pxn, EQP, JQP, QP In addition experimental data (up to Dec. 2003) short-range model extrapolation due to known nuclear-structure developments inclusion of ff-strength (Gr.Th.) Hirschegg XXXIV ‘06
29
R-abundance peaks and neutron-shell numbers
already B²FH (Revs. Mod. Phys. 29; 1957) C.D. Coryell (J. Chem. Educ. 38; 1961) ...still today important r-process properties to be studied experimentally and theoretically. 132Sn 50 131In82 49 133In84 129Ag82 47 128Pd82 46 127Rh82 45 126 127 128 129 130 131 132 133 Pn~85% 165ms 278ms 46ms(g) r-process path (n,) 135 136 137 134 158ms(m) 130Cd82 48 162ms b “climb up the staircase“ at N=82; major waiting point nuclei; “break-through pair“ 131In, 133In; K.-L. Kratz (Revs. Mod. Astr. 1; 1988) climb up the N= 82 ladder ... A 130 “bottle neck“ total r-process duration r “association with the rising side of major peaks in the abundance curve“ Hirschegg XXXIV ‘06
30
What we knew already in 1986 ... Request: SELECTIVITY !
Shell-model (QRPA; Nilsson/BCS) prediction 1+ 1.0 Q = 8.0 MeV T1/2 = 230 ms 1+ 6.0 IKMz – 155R(1986) 1+ T1/2 = (195 ± 35) ms 1+ 5.0 1+ 1+ 4.0 1+ K.-L. Kratz et al (Z. Physik A325; 1986) 3.0 g7/2, g9/2 Exp. at old SC-ISOLDE with plasma ion-source and dn counting 1+ 4.1 2.0 streichkandidat Problems: high background from -surface ionized 130In, 130Cs -molecular ions [40Ca90Br]+ T1/2(GT) = 0.3 s 1.0 1- Request: SELECTIVITY ! Hirschegg XXXIV ‘06
31
Request: Selectivity ! Why ? How? at an ISOL facility Fast UCx target
Ag Cd In Cs Sn Sb Te I Xe the Ag “needle” in the Cs “haystack” How? at an ISOL facility Fast UCx target Neutron converter Laser ion-source Hyperfine splitting Isobar separation Repeller Chemical separation Multi-coincidence setup streichkandidat 50 800 >105 Hirschegg XXXIV ‘06
32
Request: Selectivity ! g-singles spectrum Laser ion-source (RILIS)
Laser ON Comparison of Laser ON to Laser OFF spectra Laser OFF g-singles spectrum 130Cd 1669 keV 1732 keV Laser ON Laser OFF 130Sb 1749 keV Energy [keV] Chemically selective, three-step laser ionization of Ag into continuum streichkandida Properties of the laser system: Efficiency ≈ 10% Selectivity ≈ 103 Hirschegg XXXIV ‘06
33
The N=82 shell gap as a function of Z
The N=82 shell closure dominates the matter flow of the „main“ r-process (nn≥1023). S2n(82) – S2n(84) ↷ paired neutrons S2n(81) – S2n(83) ↷ unpaired neutrons. Therefore request: experimental masses and more reliable model predictions A≈130 Nr, peak FRDM FRDM HFB 9 HFB 9 Groote EFTSI-Q Groote EFTSI-Q Hirschegg XXXIV ‘06
34
Hirschegg XXXIV ‘06
35
The -process 3<T9<6
NSE: All nuclear reactions via strong and electro-magnetic interactions are very fast when compared with dynamical time scales. At T9 ~6, -particles become the dominant constituent of the hot bubble! Recombination of the -particles is possible via: 3→ 12C and ++n → 9Be, followed by 9Be(,n) 12C Charged-particle freeze-out at T9 ~ 3 with: Dominant part of -particles ~ 80% Some heavy nuclei beyond iron (80 <A< 110) Probably a little bit of free neutrons Seed composition for a subsequent r-process. Hirschegg XXXIV ‘06
36
define three parameters: Electron abundance: Ye=Yp=1-Yn
For a given blob of matter behind the shock front above the proto-neutron star : define three parameters: Electron abundance: Ye=Yp=1-Yn Example: Ye=0.45 55% neutrons & 45% protons Radiation entropy: Srad ~ T3/r Expansion speed Vexp determines process durations and r : Example: Vexp= 7500 km/s, R0= 130 km = 35 ms, r= 280 ms Hirschegg XXXIV ‘06
37
Seed nuclei after an -rich freeze-out S=200, Vexp=7500 km/s
Neutron-rich seed beyond N=50 difference to „classical“ r-process with 56Fe seed avoids N=50 r-process bottle-neck seed nuclei: 94Kr, 100Sr (87Se, 103Y, 89Br, 84Ge, 95Kr, 76Ni, 95Rb below 5%) Hirschegg XXXIV ‘06
38
This means: (n,γ) < (γ,n) No need of neutron capture rates!
Definition of the r-process freeze-out Classical r-process: nn, T9= const up to break-out of (nγγn) equilibrium! This means: (n,γ) < (γ,n) instantaneous freeze-out! No need of neutron capture rates! Dynamical r-process: nn = f(t,T9), T9= f(t) This means: (nn) < (n,γ) and (nn) < (γ,n) no instantaneous freeze-out! Neutron capture rates are needed! Hirschegg XXXIV ‘06
39
Freeze-out is fast no significant effect on A=130 peak
Effect of neutron-capture rates on the A=130 peak Freeze-out is fast no significant effect on A=130 peak Hirschegg XXXIV ‘06
40
Freeze-out is slow significant effect on A=195 peak
Effect of neutron-capture rates on the A=195 peak Freeze-out is slow significant effect on A=195 peak Hirschegg XXXIV ‘06
41
Synthesizing the A=130 peak
Process duration: 146 ms reserve Ye Entropy S r-process duration t [ms] nn [cm-3] at freeze out T9 [109 K] at freeze out 0,49 230 234 1,9 x1020 0,53 0,45 190 146 8,1 x1021 0,79 0,41 160 109 9,0 x1021 0,77 Hirschegg XXXIV ‘06
42
Synthesizing the A=195 peak
Process duration: 327 ms not yet enough Pb Th U reserve Ye Entropy S r-process duration t [ms] nn [cm-3] at freeze out T9 [109 K] at freeze out 0,49 290 412 2,0 x1021 0,33 0,45 260 327 1,5 x1022 0,41 235 213 2,9 x1022 0,42 Hirschegg XXXIV ‘06
43
Present status r-process-rich Galactic halo stars
(C. Sneden, J.J. Cowan, et al.) Hirschegg XXXIV ‘06
44
Reproduce isotopic Nr, distribution (lsq-fits; A > 80, 120)
CS abundances scaled solar r-process scaled theoretical solar r-process Zr Pt Ru Cd Os Pb Ga Sr Ba Mo Pd Sn Nd Dy Ge Gd Ce Sm Er Yb Ir Y Rh Hf Nb Ag La Pr Eu Ho Tb Au Lu Tm Th U Hirschegg XXXIV ‘06
45
Cosmo chronology with Thorium
U Hirschegg XXXIV ‘06
46
GSI-Experiment E040 (2000) • 238U beam @ 750MeV/u on Pb-Target
Projectile fission produces neutron-rich nuclei • Separation and identification of fission products with the FRS • Measuring T1/2 and Pn after implantation of nuclei in Si-stack T1/2 = 296 (35)ms T1/2 = 334 (14)ms J. Pereira, NSCL and R. Kessler, Uni Mainz Hirschegg XXXIV ‘06
47
Example: recent experiment
110 40 Zr 70 ... a new double-magic „waiting-point“ nucleus? Beta-decay Normal shell strength strongly deformed (2=0.31) Shell strength quenched spherical B. Pfeiffer et al., Acta Phys. Polon. B27 (1996) T½ = 88 ms Pn = 8 % T½ = 14 ms Pn = 0.7 % 73% 10% 0+ 110Zr GT 1+ Levels 110Nb 2- … Q 9.27 MeV Sn 3.73 MeV 3- 0+ 110Zr 1+ 1.13 5.22 6.44 7.04 7.64 Q 9.27 MeV GT Sn 3.21 MeV [g9/2g7/2] 99% 1.67 0.85 110Nb Exp at NSCL/MSU; Nov. 2005; to be continued at GSI ? Hirschegg XXXIV ‘06
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.