Download presentation
Presentation is loading. Please wait.
Published byThomas Shelton Modified over 9 years ago
1
Green rusts and the corrosion of iron based materials J.-M. R. Génin et al. Institut Jean Barriol Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, UMR 7564 CNRS- Université Henri Poincaré-Nancy 1, Département Matériaux et Structures, ESSTIN, 405 rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France. E-Mail:genin@lcpme.cnrs-nancy.fr “Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”
2
Green rusts, i.e. Fe II-III hydroxysalts, are layered double hydroxides (LDH) constituted of [Fe II (1-x) Fe III x (OH) 2 ] x+ layers and [(x/n)A n- (mx/n)H 2 O] x- interlayers. Anions can be Cl -, CO 3 2-, SO 4 2-, HCOO -, C 2 O 4 2-,, SeO 4 2- … For Chloride[Fe II 2 Fe III (OH) 6 ] + [Cl - 2H 2 O] - Sulphate[Fe II 4 Fe III 2 (OH) 12 ] 2+ [SO 4 2- 8H 2 O] 2- Carbonate[Fe II 4 Fe III 2 (OH) 12 ] 2+ [CO 3 2- 3H 2 O] 2- Two types of stacking by XRD: GR1 [R(-3)m] and GR2 [P(-3)m1] XRD pattern of hydroxycarbonate GR1(CO 3 2- ). ( thesis of Omar Benali 2002). R-3m XRD pattern of hydroxysulphate GR2(SO 4 2- ) (thesis of Rabha Aïssa 2004). P-3m1
3
GR1(Cl - ) GR1(CO 3 2- ) GR1(CO 3 2- ) GR2(SO 4 2- ) x 0.33 0.25 0.33 0.33 RA RA RA RA mm s -1 % mm s -1 % mm s -1 % mm s -1 % D 1 1.27 2.89 37 1.28 2.97 62 1.27 2.93 51 1.27 2.88 66 D 2 1.25 2.60 32 1.28 2.55 12 1.28 2.64 15 D 3 0.47 0.41 31 0.47 0.43 26 0.47 0.42 34 0.47 0.44 34 Transmittance % -4-3-201234 D3D3 D1D1 D2D2 78 K Velocity (mm s -1 ) 94 95 96 97 98 99 100 Transmittance % (c)(c) GR1(CO 3 2- ) x = 0.33 D1D1 D3D3 D2D2 Velocity (mm s -1 ) -4-3-201234 82 87 92 97 Transmittance % GR1(CO 3 2- ) x = 0.25 78 K (b)(b) D3D3 D1D1 GR2(SO 4 2- ) x = 0.33 Transmittance (%) Velocity (mm s -1 ) -4-3-201234 78 K (d)(d) 88 90 92 94 96 98 100 98 96 92 94 -6-4-20246 GR1(Cl - ) x 0.33 78 K (a)(a) Velocity (mm s -1 ) -4-3-201234 D2D2 D3D3 D1D1 Transmission Mössbauer spectra measured at 78 K of various Green Rusts 2 ferrous doublets D 1 & D 2 (large ) 1 ferric doublet D 3 (small ) x = Fe III / Fe total is obtained directly from the spectrum (RA of D 3 ) Experimentally 0.25 < x < 0.33
4
S1S1 S2S2 after t f -15-10-5051015 92 94 96 98 100 Transmittance (%) V (mm s -1 ) -15-10-5051015 92 94 96 98 100 D3D3 D2D2 D1D1 Transmittance (%) V (mm s -1 ) 15 t1t1 Most of the time the corrosion of iron ends into a ferric oxyhydroxide FeOOH that is the result of the oxidation of the green rust by dissolution-precipitation V (mm s -1 ) -15-10-50510 92 94 96 98 100 S2S2 S1S1 D3D3 D1D1 Transmittance (%) V (mm s -1 ) t2t2 -15-10 -5 05 10 85 90 95 100 D2D2 D3D3 D1D1 Transmittance (%) V (mm s -1 ) tgtg -15-10-5051015 90 92 94 96 98 100 102 Transmittance (%) 15 t3t3 D4D4 S1S1 S3S3 S2S2 pH EhEh -0.6 -0.4 -0.2 0.0 0.2 0.4 t2t2 pH EhEh t3t3 t1t1 tgtg time (mn) 0100200300400 0 2 4 6 8 tftf (a) D 1, D 2, D 3 : GR1(CO 3 2- ) doublets S 1 : ferrihydrite sextet S 2, S 3 : goethite sextets D 4 : ferrihydrite doublet t g : GR1(CO 3 2- ) alone t 1 : GR1(CO 3 2- ) + some ferrihydrite t 2 : GR1(CO 3 2- ) + goethite + ferrihydrite t 3 : goethite + ferrihydrite After t f : goethite alone Carbonate containing medium E h and pH monitoring of the solution with time Mössbauer spectra during the oxidation by dissolution- precipitation (O. Benali)
5
H2O2H2O2 Quadrupole splitting (mm s -1 ) x = 1 84 88 92 96 100 x = 1 78 K (e)(e) 94 96 98 100 Transmittance % Velocity (mm s -1 ) -404-22 -4-3-201234 Velocity (mm s -1 ) x ~ 0.78 78 K (d)(d) Transmittance % D3D3 D1D1 D2D2 78 K -4-3-201234 Velocity (mm s -1 ) 99 94 95 96 97 98 100 Transmittance % (a)(a) x = 0.33 Quadrupole splitting (mm s -1 ) x ~ 0.50 D 3 33 % D 4 16.5 % 78 K Probability density (p) (b)(b) 0123 D 1 38 % D 2 12.5 % x = 0.33 D 3 33 % 78 K Probability density (p) (a)(a) 0123 D 1 50 % D 2 17 % Quadrupole splitting (mm s -1 ) 84 88 92 96 100 Transmittance % (b)(b) x ~ 0.50 78 K -4-3-201234 Velocity (mm s -1 ) Quadrupole splitting (mm s -1 ) D 3 32 % D 4 31 % 78 K Probability density (p) (c)(c) 0123 D 1 28 % D 2 9 % x ~ 0.63 (c)(c) 84 88 92 96 100 Transmittance % 78 K -4-3-201234 Velocity (mm s -1 ) 0.2 0.40.60.81.01.21.4 - 0.2 -0.1 0.0 0.1 0.2 0.3 E h (V) {2 × [n(H 2 O 2 ) / n(Fe total )] + (1/3)} Quadrupole splitting (mm s -1 ) D 3 35 % D 4 43 % 78 K Probability density (p) (d)(d) 0123 D 1 + D 2 22 % x ~ 0.78 D 3 33 % D 4 67 % 78 K (e)(e) 0123 Probability density (p) with H 2 O 2 a b c d e Fe II 6(1-x) Fe III 6x O 12 H 2(7-3x) CO 3 The in situ oxidation of green rusts by deprotonation Use a strong oxidant such as H 2 O 2, Dry the green rust and oxide in the air, Violent air oxidation, Oxide in a basic medium… Fe II-III oxyhydroxycarbonate 0 < x < 1 “Gütlich, Bill, Trautwein: Mössbauer Spectroscopy and Transition Metal Chemistry@Springer-Verlag 2009”
6
003 0.2 µm (a)(a) GR(CO 3 2- ) x = 0.33 0.2 µm (b)(b) H 2 O 2 x = 0.50 (c)(c) 0.5 µm H 2 O 2 x = 1 (d)(d) 0.5 µm Aerial x = 1 10203040 Intensity (arb. unit) Diffraction Angle (2 (c)(c) 113 110 018 012 015 006 (a)(a) (b)(b) (d)(d) 10203040 Intensity (arb. unit) Diffraction Angle (2 TEM and XRD patterns of the Fe II-III oxyhydroxycarbonate due to the in situ deprotonation
7
G G G 2 (°) (b)(b) K (Mo G G G -12-8-404812 Velocity (mm s -1 ) 293 K GR* -12-8-404812 Velocity (mm s -1 ) 293 K Goethite (G) -FeOOH 0 10 20 30 40 01020304050 K (Mo 00.3 GR* 00.6 GR* 01.2 GR* 01.8 GR* (c)(c) 01.5 GR* 2 (°) Intensity (u. a.) (a)(a) G M G M M M M M G 010203040 2 (°) -12-8-404812 Velocity (mm s -1 ) 293 K Magnetite (M) + Goethite (G) tftf x(O 2 ) = 20% (750 rpm) 20% …13,3%...6,7% ………. 2,7% (375 rpm) E C B 40008001200 2006001000 M + G G G -400 -200 0 200 400 G GR1(CO 3 2- )* Reaction time (min) tgtg E h (mV) (c)(c)(a)(a)(b)(b) End products of oxidation (A.Renard) Oxidation by oxygen (a) & (b) Dissolution- precipitation (1)Fe II 4 Fe III 2 (OH) 12 CO 3 + 3/4 O 2 → 5 Fe III OOH + CO 3 2- + Fe 2+ + 7/2 H 2 O (2) 3Fe 2+ + (1/4)O 2 + (3/2) H 2 O -Fe III OOH + 2 Fe 3+ + H 2 (3) Fe II 4 Fe III 2 (OH) 12 CO 3 + 1/3 O 2 → 5/3 Fe II Fe III 2 O 4 + CO 3 2- + Fe 2+ + 6 H 2 O (c) In situ deprotonation (4)Fe II 4 Fe III 2 (OH) 12 CO 3 + O 2 → Fe III 6 O 12 H 8 CO 3 + 2 H 2 O Both modes of oxidation exist depending on the rate of oxygen B C D C D
8
D 1 +D 2 D3D3 CEMS spectrum at room temperature of a steel disk dipped 24 hours in a 0.1 M NaHCO 3 solution. -Fe Dissolution and Precipitation CORROSION In situ deprotonation of GR1(CO 3 2- ) PASSIVATION pH -FeOOH H 2 CO 3 HCO 3 - CO 3 2 - Fe ++ FeOH + FeOOH - Fe(OH) 2 Fe 567891011121314 E h (V) 0.4 -0.2 0 0.2 -0.8 -0.4 -0.6 Fe(OH) 2 + GR(CO 3 2- ) The first step of corrosion: the green rust layer [Fe 2+ ] is 10 -6 M E h -pH Pourbaix diagrams of GR(CO 3 2- ) Aqueous corrosion of iron Iron, Steels Ferrous hydroxide Agressive anions (Cl -, CO 3 2-, SO 4 2- ) Green rusts Common rustsFerric green rusts including anions Fe0 Fe II Fe II-III Fe III Dissolution-precipitationIn situ deprotonation Goethite, Magnetite, Lepidocrocite, Akaganeite, -FeOOH, Ferroxyhite
9
20 µm (e)(e) (A. Zegeye) (G. Ona-Nguema) (a)(a) (b)(b) 5 µm (d)(d) (a)Production of Fe(II) and consumption of methanoate during culture of Shewanella putrefaciens in presence of lepidocrocite FeOOH. The initial amount of FeIII (as lepidocrocite ) and of methanoate were respectively 80 mM and 43 Mm. (b) X-ray pattern of the solid phase of incubation experiments with S. putrefaciens: mixture of green rust (GR1) and siderite (S) obtained after 15 days of incubation. (c) Mössbauer spectrum after 6 days of bioreduction. (c) TEM observations and (d) optical micrograph of GR crystals obtained by reduction of lepidocrocite by S. putrefaciens; One sees the bacteria that respirate GR*. 0 3 6 9 12 10 20 30 40 50 60 Intensity (a.u.) 2 GR1 (012) GR1 (015) GR1 (018) GR1 (003) GR1 (006) S (104) S (018) Time (days) 0 10 20 30 40 50 60 70 0 6 12 18 24 30 36 Fe(II) Methanoate Abiotic control Methanoate (mM) Fe(II) (mM) 80 GR* is also obtained by bacterial reduction x ~ 0.50 (c)(c) Six days Velocity (mm s -1 ) Transmittance (%) -4-2024 92 94 96 98 100 D2D2 DD D’ 3 D1D1 78 K bioreduction
10
( a) SEM micrograph showing hexagonal shaped crystals of GR(SO 4 2− ) upon corroded steel sheet left 25 years in seawater, (b) sequence of the rust layers: metal–magnetite–lepidocrocite–GR(SO 4 2− ), (c) Raman spectrum of the outer part of the marine corroded layer. (A. Zegeye) Marine corrosion of steel and Microbially influenced corrosion Formation of GR2(SO 4 2- ) during the reduction of -FeOOH by a dissimilatory iron-respiring bacterium, Shewanella putrefaciens. Reduction was performed in a non-buffered medium without any organic compounds, -4-2024 92 94 96 98 100 77 K Transmittance (%) Velocity (mm s -1 ) D3D3 D2D2 D1D1 DD Global computed GR: Fe(II) = D 1 GR: Fe(III) = D 3 GR: Fe(II) = D 2 Lepidocrocite = D Experimental Fe 0 -FeOOH GR(SO 4 2- ) Fe II S DIRB SRB GR(SO 4 2- ) Fe II Microbially induced corrosion in marine sediments is due to the reduction of oxyhydroxides by dissimilatory iron reducing bacteria that respirates Fe III producing Fe II-III oxyhydroxysulphate followed by its reduction into sulfides in acidic conditions due to sulphate reducing bacteria. Mössbauer spectroscopy allowed us to study the family of Fe II-III hydroxysalts known as green rusts, which are intermediate compounds during the corrosion of iron-based materials. There exist two modes of oxidation of the green rusts, either by dissolution-precipitation that leads to corrosion, or by in situ deprotonation giving rise to a ferric oxyhydroxysalt, e.g. Fe III6 O 12 H 8 CO 3, that leads to passivation of steels. (c)(c) (Refait, Génin)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.