Download presentation
Presentation is loading. Please wait.
Published byBarrie Carter Modified over 9 years ago
1
CEN 316 Computer Organization and Design Computer Arithmetic Floating Point Dr. Mansour AL Zuair
2
Chapter 3 CEN 316 2 Chapter 3 2 Review of Numbers Computers are made to deal with numbers What can we represent in N bits? è Unsigned integers: 0to2 N - 1 è Signed Integers (Two’s Complement) -2 (N-1) to 2 (N-1) - 1
3
Chapter 3 CEN 316 3 Other Numbers What about other numbers? è Very large numbers? (seconds/century) 3,155,760,000 10 (3.15576 10 x 10 9 ) è Very small numbers? (atomic diameter) 0.00000001 10 (1.0 10 x 10 -8 ) è Rationals (repeating pattern) 2/3 (0.666666666...) è Irrationals 2 1/2 (1.414213562373...) e (2.718...), (3.141...) All represented in scientific notation
4
Chapter 3 CEN 316 4 Scientific Notation (in Decimal) 6.02 10 x 10 23 radix (base) decimal pointmantissa exponent Normalized form: no leadings 0s (exactly one digit to left of decimal point) Alternatives to representing 1/1,000,000,000 è Normalized: 1.0 x 10 -9 è Not normalized: 0.1 x 10 -8,10.0 x 10 -10
5
Chapter 3 CEN 316 5 Scientific Notation (in Binary) Computer arithmetic that supports it called floating point, because it represents numbers where binary point is not fixed, as it is for integers è Declare such variable in C as float 1.0 two x 2 -1 radix (base) “binary point” exponent mantissa
6
Chapter 3 CEN 316 6 Floating Point Representation (1/2) Normal format: +1.xxxxxxxxxx two *2 yyyy two Multiple of Word Size (32 bits) 0 31 SExponent 302322 Significand 1 bit8 bits23 bits S represents Sign Exponent represents y’s Significand represents x’s Represent numbers as small as 2.0 x 10 -38 to as large as 2.0 x 10 38
7
Chapter 3 CEN 316 7 Floating Point Representation (2/2) What if result too large? (> 2.0x10 38 ) è Overflow! è Overflow Exponent larger than represented in 8-bit Exponent field What if result too small? (>0, < 2.0x10 -38 ) è Underflow! è Underflow Negative exponent larger than represented in 8-bit Exponent field How to reduce chances of overflow or underflow?
8
Chapter 3 CEN 316 8 Double Precision Fl. Pt. Representation Next Multiple of Word Size (64 bits) Double Precision (vs. Single Precision) è è C variable declared as double è è Represent numbers almost as small as 2.0 x 10 -308 to almost as large as 2.0 x 10 308 è è But primary advantage is greater accuracy due to larger significand 0 31 SExponent 302019 Significand 1 bit11 bits20 bits Significand (cont’d) 32 bits
9
Chapter 3 CEN 316 9 IEEE 754 Floating Point Standard (1/4) Single Precision, DP similar Sign bit:1 means negative 0 means positive Significand: è To pack more bits, leading 1 implicit for normalized numbers è 1 + 23 bits single, 1 + 52 bits double è always true: Significand < 1 (for normalized numbers) Note: 0 has no leading 1, so reserve exponent value 0 just for number 0
10
Chapter 3 CEN 316 10 IEEE 754 Floating Point Standard (2/4) Kahan wanted FP numbers to be used even if no FP hardware; e.g., sort records with FP numbers using integer compares Could break FP number into 3 parts: compare signs, then compare exponents, then compare significands Wanted it to be faster, single compare if possible, especially if positive numbers Then want order: è Highest order bit is sign ( negative < positive) è Exponent next, so big exponent => bigger # è Significand last: exponents same => bigger #
11
Chapter 3 CEN 316 11 IEEE 754 Floating Point Standard (3/4) Negative Exponent? è 2’s comp? 1.0 x 2 -1 v. 1.0 x2 +1 (1/2 v. 2) 01111 000 0000 0000 0000 0000 0000 1/2 00000 0001000 0000 0000 0000 0000 0000 2 è è This notation using integer compare of 1/2 v. 2 makes 1/2 > 2! Instead, pick notation 0000 0001 is most negative, and 1111 1111 is most positive è è 1.0 x 2 -1 v. 1.0 x2 +1 (1/2 v. 2) 1/2 00111 1110 000 0000 0000 0000 0000 0000 01000 0000000 0000 0000 0000 0000 0000 2
12
Chapter 3 CEN 316 12 IEEE 754 Floating Point Standard (4/4) Called Biased Notation, where bias is number subtract to get real number è è IEEE 754 uses bias of 127 for single prec. è è Subtract 127 from Exponent field to get actual value for exponent è è 1023 is bias for double precision Summary (single precision): 0 31 S Exponent 302322 Significand 1 bit8 bits 23 bits (-1) S x (1 + Significand) x 2 (Exponent-127) è è Double precision identical, except with exponent bias of 1023
13
Chapter 3 CEN 316 13 Example: Converting Binary FP to Decimal Sign: 0 => positive Exponent: è 0110 1000 two = 104 ten è Bias adjustment: 104 - 127 = -23 Significand: è 1 + 1x2 -1 + 0x2 -2 + 1x2 -3 + 0x2 -4 + 1x2 -5 +... =1+2 -1 +2 -3 +2 -5 +2 -7 +2 -9 +2 -14 +2 -15 +2 -17 +2 -22 = 1.0 ten + 0.666115 ten 00110 1000101 0101 0100 0011 0100 0010 Represents: 1.666115 ten *2 -23 ~ 1.986*10 -7 (about 2/10,000,000)
14
Chapter 3 CEN 316 14 Converting Decimal to FP (1/3) Simple Case: If denominator is an exponent of 2 (2, 4, 8, 16, etc.), then it’s easy. Show MIPS representation of -0.75 è -0.75 = -3/4 è -11 two /100 two = -0.11 two è Normalized to -1.1 two x 2 -1 è (-1) S x (1 + Significand) x 2 (Exponent-127) è (-1) 1 x (1 +.100 0000... 0000) x 2 (126-127) 10111 1110100 0000 0000 0000 0000 0000
15
Chapter 3 CEN 316 15 Converting Decimal to FP (2/3) Not So Simple Case: If denominator is not an exponent of 2. è Then we can’t represent number precisely, but that’s why we have so many bits in significand: for precision è Once we have significand, normalizing a number to get the exponent is easy. è So how do we get the significand of a never-ending number?
16
Chapter 3 CEN 316 16 Converting Decimal to FP (3/3) To finish conversion: è Write out binary number with repeating pattern. è Cut it off after correct number of bits (different for single v. double precision). è Derive Sign, Exponent and Significand fields.
17
Chapter 3 CEN 316 17 1: -1.75 2: -3.5 3: -3.75 4: -7 5: -7.5 6: -15 What is the decimal equivalent of the floating pt # above? 1 1000 0001111 0000 0000 0000 0000 0000 Example
18
Chapter 3 CEN 316 18 “And in conclusion…” Floating Point numbers approximate values that we want to use. IEEE 754 Floating Point Standard is most widely accepted attempt to standardize interpretation of such numbers è Every desktop or server computer sold since ~1997 follows these conventions Summary (single precision): 0 31 SExponent 302322 Significand 1 bit8 bits23 bits (-1) S x (1 + Significand) x 2 (Exponent-127) è è Double precision identical, bias of 1023
19
Chapter 3 CEN 316 19 Representation for ± ∞ In FP, divide by 0 should produce ± ∞, not overflow. Why? è OK to do further computations with ∞ E.g., X/0 > Y may be a valid comparison IEEE 754 represents ± ∞ è Most positive exponent reserved for ∞ è Significands all zeroes è Sign: 0 for +∞ and 1 for -∞
20
Chapter 3 CEN 316 20 Representation for 0 Represent 0? è exponent all zeroes è significand all zeroes too è What about sign? è +0: 0 00000000 00000000000000000000000 è -0: 1 00000000 00000000000000000000000 Why two zeroes? è Helps in some limit comparisons
21
Chapter 3 CEN 316 21 Special Numbers What have we defined so far? (Single Precision) ExponentSignificand Object 0 0 0 0 nonzero ??? 1-254 anything +/- fl. pt. # 255 0 +/- ∞ 255 nonzero ??? è Exp=0,255 & Sig!=0 …
22
Chapter 3 CEN 316 22 Representation for Not a Number What is sqrt(-4.0) or 0/0 ? è If ∞ not an error, these shouldn’t be either. è Called Not a Number (NaN) è Exponent = 255, Significand nonzero
23
Chapter 3 CEN 316 23 Representation for Denorms (1/2) Problem: There’s a gap among representable FP numbers around 0 è Smallest representable pos num: a = 1.0… 2 * 2 -126 = 2 -126 è Second smallest representable pos num: b = 1.000……1 2 * 2 -126 = 2 -126 + 2 -149 a - 0 = 2 -126 b - a = 2 -149 b a0 + - Gaps! Normalization and implicit 1 is to blame!
24
Chapter 3 CEN 316 24 Representation for Denorms (2/2) Solution: è è We still haven’t used Exponent = 0, Significand nonzero è è Denormalized number: no leading 1, implicit exponent = -126. è è Smallest representable pos num: a = 2 -149 è è Second smallest representable pos num: b = 2 -148 0 + -
25
Chapter 3 CEN 316 25 Rounding Math on real numbers we worry about rounding to fit result in the significant field. FP hardware carries 2 extra bits of precision, and rounds for proper value Rounding occurs when converting… è double to single precision è floating point # to an integer
26
Chapter 3 CEN 316 26 IEEE Four Rounding Modes Round towards + ∞ è ALWAYS round “up”: 2.1 3, -2.1 -2 Round towards - ∞ è ALWAYS round “down”: 1.9 1, -1.9 -2 Truncate è Just drop the last bits (round towards 0) Round to (nearest) even (default) è Normal rounding, almost: 2.5 2, 3.5 4 è Insures fairness on calculation è Half the time we round up, other half down
27
Chapter 3 CEN 316 27 Summary
28
Chapter 3 CEN 316 28 FP Addition & Subtraction Much more difficult than with integers (can’t just add significands) How do we do it? è De-normalize to match larger exponent è Add significands to get resulting one è Normalize (& check for under/overflow) è Round if needed (may need to renormalize) If signs ≠, do a subtract. (Subtract similar) è If signs ≠ for add (or = for sub), what’s ans sign? Question: How do we integrate this into the integer arithmetic unit?
29
Chapter 3 CEN 316 29 Floating point Addition
30
09/12/1436Chapter 3Chapter 3 CEN 316 30
31
Chapter 3 CEN 316 31 Floating point Multiplication
32
Chapter 3 CEN 316 32 MIPS Floating Point Architecture
33
Chapter 3 CEN 316 33 MIPS Floating Point Architecture Problems: è These are far more complicated than their integer counterparts è Can take much longer to execute è Inefficient to have different instructions take vastly differing amounts of time. è Some programs do no FP calculations è It takes lots of hardware relative to integers to do FP fast
34
Chapter 3 CEN 316 34 MIPS Floating Point Architecture 1990 Solution: Make a completely separate chip that handles only FP. Coprocessor 1: FP chip è contains 32 32-bit registers: $f0, $f1, … è most of the registers specified in.s and.d instruction refer to this set è separate load and store: lwc1 and swc1 (“load word coprocessor 1”, “store …”) è Double Precision: by convention, even/odd pair contain one DP FP number: $f0 / $f1, $f2 / $f3, …, $f30 / $f31 ñ Even register is the name
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.