Download presentation
Presentation is loading. Please wait.
Published byPeter Long Modified over 9 years ago
1
SPIE'01CIRL-JHU1 Dynamic Composition of Tracking Primitives for Interactive Vision-Guided Navigation D. Burschka and G. Hager Computational Interaction and Robotics Laboratory (CIRL) Johns Hopkins University
2
SPIE'01CIRL-JHU2 Outline Introduction Motivation – Navigation Strategies Tracking-System Architecture Pre-Processing New Tracking Definition Feature Identification Results Conclusions
3
SPIE'01CIRL-JHU3 Navigation Strategies Sensor-Based Control control signals for the robot are generated directly from the visual input Map-Based Navigation pre-processed sensor data is stored in a geometrical representation of the envi- ronment (map). Path plan- ning+strategy algorithms are used to define the actions of the robot
4
SPIE'01CIRL-JHU4 Tracking Primitives Dynamic Vision (XVision) algorithms Color Tracking Pattern Tracking Disparity tracking
5
SPIE'01CIRL-JHU5 XVision as Tracking Tool Dynamic Vision (XVision) algorithms applications
6
SPIE'01CIRL-JHU6 Tracking-System Architecture
7
SPIE'01CIRL-JHU7 Dynamic Composition of Tracking Cues
8
SPIE'01CIRL-JHU8 Tracking-System Architecture
9
SPIE'01CIRL-JHU9 Segmentation in the Color Space - HSI representation of color space - Variable resolution gridding of space Intensity Hue Saturation
10
SPIE'01CIRL-JHU10 Segmentation in the Disparity Domain
11
SPIE'01CIRL-JHU11 Tracking-System Architecture
12
SPIE'01CIRL-JHU12 State Transitions in the Tracking Process
13
SPIE'01CIRL-JHU13 State Information saved in the Tracking Module Information about the object in the real scene is shared between the different Image Identifications: Position in the image Size of the region Range in the current image domain Shape ratio in the image Compactness of the region
14
SPIE'01CIRL-JHU14 Tracking-System Architecture
15
SPIE'01CIRL-JHU15 Quality Value for Initial Search
16
SPIE'01CIRL-JHU16 Problem in the Disparity Domain
17
SPIE'01CIRL-JHU17 Ground Plane Suppression
18
SPIE'01CIRL-JHU18 Results Obstacle Detection
19
SPIE'01CIRL-JHU19 Results Dynamic Composition
20
SPIE'01CIRL-JHU20 Conclusions and Future Work: Dynamic Composition of the two Basic Feature Identification tools allowed robust initial selection and navigation through a door Extension to the entire set of Feature Identification tools is our next step The developed algorithms allow robust obstacle avoidance
21
SPIE'01CIRL-JHU21 Additional Information: Web: http://www.cs.jhu.edu/CIRL http://www.cs.jhu.edu/~burschka
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.