Download presentation
Presentation is loading. Please wait.
Published byWilliam McIntosh Modified over 11 years ago
1
ETSI STF386 on Cognitive PMSE Chairmen: Wolfgang Bilz & Prof. Georg Fischer Status and Next Steps Input to Global Standards Collaboration (GSC)
2
Agenda 1.STF386 Status 2.Alignment with German C-PMSE Project 3.Next Steps Page 2 | GSC | 11th Sept 2011
3
STF386 Status 1 Page 3 | GSC | 11th Sept 2011
4
STF386 Status Team Wolfgang Bilz (Shure EU) Chairman Prof. Georg Fischer (UNI Erlangen) Chairman Matthias Fehr (APWPT) Dr. Axel Schmidt (Sennheiser) Dr. Maria Dolores Perez-Guario (UNI Hannover) Dr. Radu Circa (Bosch conference systems) Edgar Reihl P.E. (Shure US) Clemens Kunert (IRT ) Page 4 | GSC | 11th Sept 2011
5
STF386 Status Deliverables Phases Phase A deliverable: Technical Report ETSI TR102799 Operation methods and principles for spectrum access systems and quality control of used spectrum for PMSE technologies utilising cognitive interference mitigation techniques TB approval January 2010 Phase B deliverable: Technical Specification ETSI TR102800 TS on the recommended spectrum access technique TB approval expected October 2010 Phase C deliverable: ETSI Technical Report TR102801 TR on the different RF compliance tests for the selected spectrum access mechanism: TB approval mid 2012 ? Support by German national Research project BMWI C-PMSE Work in progress Page 5 | GSC | 11th Sept 2011
6
STF386 Status Schedule To Dos New work item C-PMSE needs to be prepared and kicked off in ETSI! Financing and contract for Phase C needs to be fixed! Start 28. Sept time Phase A 2009 2010 2012 Phase B Phase C Technical Report TR102799 Technical Report TR102800 Technical Report TR102801 Experimental Platform / BMWI Research Project C-PMSE 2011 New Work Item in ETSI ? Page 6 | GSC | 11th Sept 2011 2013
7
STF386 Status Proposed architecture Hierarchical database with geolocation ABT (Ask before talk) and LBT (Listen before talk) Proactive rather reactive ! Multiple sniffers! Standardized interfaces, rest is proprietary Page 7 | C-PMSE PBA | 24th May 2011
8
STF386 Status Proactive behaviour Stage with Wireless Mics Receivers SCR-0 SCR-1SCR-2 SCR-3 Movement of interferer Interferer Doors OutdoorIndoor FoyerEntrance Hall SCR-4 Roof Rationale for using multiple Scanning receivers Predict approaching interferers Determine Gradients in C/I, BER Determine movement profile Compose Radio Environment Map incl. Movement directions Page 8 | C-PMSE PBA | 24th May 2011
9
STF386 Status Link quality supervision Quality of service Time Reactive scheme with cellular Quality Threshold Gradient Detection New proposed proactive scheme with C-PMSE Action i.e. change of RRM parameter RRM proactive scheme C-PMSE detects quality below threshold in advance from gradient Cellular reactive scheme e.g. power control C-PMSE needs proactive scheme! (Ensure production quality 100% of time) Cellular C-PMSE Page 9 | C-PMSE PBA | 24th May 2011
10
STF386 Status Hierarchical database approach Database at Regulator Regional Database Local Database Inside C-PMSE 1 Local Database Inside C-PMSE 2 More seldom updates Frequency Manager Database Use same approach as in IP world, DHCP lease for IP address, grant valid for a certain lease time Spectrum grant: spectrum amount+location+duration+ TX power Use offline copy, no permanent connectivity required, synchronize from time to time M2M or manual Web interface for legacy support More accurate Location info Page 10 | C-PMSE PBA | 24th May 2011
11
Alignment with German C-PMSE Project 2 Page 11 | GSC | 11th Sept 2011
12
Alignment with German C-PMSE Project Project set up German C-PMSE Project Funded by BMWI (Ministry of Economics) Runs April 2011 till June 2013 Project Size 7.5 Mil Project Partners and STF386 partners partially overlap, but not identical Main Goals of project Concept refinement from implement ability point of view Realization of a cognitive PMSE system Practical real world demonstration, planned Messe Berlin Link between ETSI STF386 and BMWI C-PMSE There is no contractual link between ETSI STF386 and BMWI C-PMSE project However common understanding and interests Refinement of Architecture and lessons learnt will go back into ETSI through STF386 Valuable input for new standardization process Page 12 | GSC | 11th Sept 2011
13
STF386 plans Relation between BMWI C-PMSE and STF386 STF386 C-PMSE Technical Reports TR102799 and TR102800 have sketched the core concepts and procedures Starting point for C-PMSE STF386 can provide guidance in cases, where procedures, architecture partionings and rationales are unclear STF386 can respond to inquires by C-PMSE, clarify open issues Consulting on decisions between implementation options, comment on implications for the whole system C-PMSE STF386 Findings by C-PMSE can go into Phase C document TR102801 STF386 can use interim results for refinement of C-PMSE architecture Valuable input for kick-off of new work item in ETSI Jointly STF386 and C-PMSE Accompany standardisation process Fast kick off new work item Page 13 | C-PMSE PBA | 24th May 2011
14
Alignment with German C-PMSE Project Lacking Technology identified Soft Degradation with digital transmission Digital transmission typically has sharp edge in quality Analogue FM has an inherent soft degradation mechanism, the noise in the back simply raises Fine granular Adaptive Modulation and Coding would be necessary with digital transmission Source coding Analogue source coding by companders actually in use Digital source coding should be waveform conservative, so should not profit from psychoacoustic effects (like assumed e.g. in MP3). Avoids artefacts with cascade of Codecs. Potential candidate e.g. Spherical logarithmic quantization (SLQ) Bidirectional Signalling Signalling not available so far, only content plane Bidirectional signalling plane needs to be added Signalling plane can use other transmission technology than content plane Link Quality Monitor RSSI was found not to be sufficient An indicator for actual link quality needed A measure that is dependent on C/I needed Difficult with analogue FM, but not impossible... Page 14 | GSC | 11th Sept 2011
15
Next Steps 3 Page 15 | GSC | 11th Sept 2011
16
Next Steps To Dos At ETSI ERM side Letter of Engagement LoE needs extension to cover third phase Budget needs to be put in place An MOU between ETSI ERM and BMWI C-PMSE would make sense Strategy for preparation of new work item should be defined At BMWI C-PMSE side Conceptual refinements on architecture need to be agreed and freeze to be handed over to ETSI STF386 At ETSI STF386 side Funding has to settle Next meetings need to be scheduled Date for next document TR102801 should be revisited and set in order to match schedule of BMWI C-PMSE Contribution to preparation of New Work Item Page 16 | GSC | 11th Sept 2011
17
Backup
18
Whats hot? 3 Page 18 | C-PMSE PBA | 24th May 2011
19
Whats hot? What people say... Transmission Technology Some people say analogue FM is behind. The problems with PMSE are due to the fact, that PMSE has not digitized yet. Not true - Calculations have shown that analogue FM indeed is very spectrally efficient. In Light of quality that has to be delivered, PMSE is performing even better than cellular. Most other systems catch their gains from heavy source coding and suffer from dramatic signalling overhead. Cellular technology Some people say PMSE should simply take over well established technology from cellular. Not that easy, due to a lot of specifics with PMSE (latency, interruption free, soft degradation, lossless coding). Page 19 | C-PMSE PBA | 24th May 2011
20
Whats hot? What people say... Source Coding Some people say that PMSE should use source coding to save spectrum Not that easy due to other coding schemes in distribution, cascaded codecs lead to artefacts Only waveform conservative codecs possible Very tough latency constraints CR Technology Some people say the PMSE community is blocking new CR technology PMSE community cannot accept that a WSD is interfering with a production WSD that just do LBT without ABT are unacceptable due to hidden node problem Page 20 | C-PMSE PBA | 24th May 2011
21
Whats hot? What people say... Hardware/RF Technology Some people say, the hardware with PMSE is old fashioned... The constraints imposed by battery and operating time make it difficult to introduce a lot of processing Analogue in principle is more powerful than digital However some opportunities are there: More linear RF chains, Switch mode PAs Introduction of new PMSE technology Spectrum and radio resource management is a matter of signalling Only Signalling plane of communication is affected (Handover, power control) Content plane (Audio signal) can stay analogue Changes with signalling plane and content plane can be advanced separately Page 21 | C-PMSE PBA | 24th May 2011
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.