Download presentation
Presentation is loading. Please wait.
Published byClifton May Modified over 9 years ago
1
Chapter McGraw-Hill/Irwin Copyright © 2008 by The McGraw-Hill Companies, Inc. All rights reserved. Valuation and Rates of Return 10
2
10-2 Chapter Outline Valuation of assets, based on the present value of future cash flows. The required rate of return in valuing an asset is based on the risk involved. Bond valuation and its determination. Stock valuation and its determination. Price-earnings ratio.
3
10-3 Valuation of Financial Assets Helps in evaluating financial commitment a firm needs to make to: –Stockholders and bondholders. –Attract investment. Cost of corporate financing (capital) is used in analyzing the feasibility of an investment on an ensuing project.
4
10-4 Valuation of Financial Assets
5
10-5 Valuation Concepts Valuation of a financial asset is based on determining the present value of future cash flows. –Required rate of return (the discount rate) Depends on the market’s perceived level of risk associated with the individual security. It is also competitively determined among companies seeking financial capital. Implying that investors are willing to accept low return for low risk and vice versa. Efficient use of capital in the past results in a lower required rate of return for investors.
6
10-6 Valuation of Bonds A bond provides an annuity stream of interest payments and a principal payment at maturity. –Cash flows are discounted at Y ( yield to maturity ). –Value of Y is determined in the bond market. –The price of the bond is: Equal to the present value of regular interest payments. Discounted by the yield to maturity added to the present value of the principal.
7
10-7 Valuation of Bonds (cont’d) Assuming interest payments ( ) = $100; principal payments at maturity ( ) = $1,000; yield to maturity (Y) = 10% and total number of periods (n) = 20. Thus, the price of binds ( ); Where: = Price of the bond; = Interest payments; = Principal payment at maturity; t = Number corresponding to a period (running from 1 to n); n = Number of periods; Y = Yield to maturity (or required rate of return)
8
10-8 Present Value of Interest Payments To determine the present value of a $100 annuity for 20 years, with a discount rate of 10%. –We have:
9
10-9 Present Value of Principal Payment (Par Value) at Maturity Principal payment at maturity is used interchangeably with par value or face value of the bond. Discounting $1,000 back to the present at 10%, we have: The current price of the bond, based on the present value of interest payments and the present value of the principal payment at maturity: Here, the price of the bond is essentially the same as its par, or stated value to be received at maturity of $1,000.
10
10-10 Concept of Yield to Maturity The yield to maturity or the discount rate is the required rate of return required by bondholders. Three factors influence the required rate of return: –Required real rate of return. –Inflation premium. –Risk premium.
11
10-11 The Real Rate of Return Demanded by the investor against current use of the funds on a non-adjusted basis. –The financial ‘rent’ the investors charges for the usage of their funds for a given period. Usually about 2 to 3%.
12
10-12 Inflation Premium Compensation towards the negative effect of inflation on the value of a dollar. –Premium added to the real rate of return: Ensures that the investor will not ‘pay’ the borrower to use his or her funds. The risk-free rate of return can be determined.
13
10-13 Risk Premium Towards special risks of an investment. –Business risk: inability of the firm to retain its: Competitive position. Maintain stability and growth. –Financial risk: inability of the firm to meet its: Debt obligations as and when due. Is relative to the type of investments.
14
10-14 Risk Premium (cont’d) Assuming the risk premium is 3%, an overall required rate of return of 10% can be computed;
15
10-15 Increase in Inflation Premium Assume this goes up from 4 to 6%, with everything else being constant. –Present value of interest payments: $100 annuity for 20 years at a discount rate of 12%;
16
10-16 Increase in Inflation Premium (cont’d) –Present value of principal payment at maturity: Present value of $1,000 after 20 years at a discount rate of 12%; –Total present value: Assuming that increase inflation increases required rate of return and decreases the bond price by $150 approximately.
17
10-17 Decrease in Inflation Premium Assuming that the inflation premium declines: –The required rate of return (yield to maturity) decrease to 8%, where the 20 year bond with a 10% interest rate would now sell for; –Present value of interest payments
18
10-18 Decrease in Inflation Premium (cont’d) –Present value of principal payment at maturity –Total present value
19
10-19 Bond Price Table
20
10-20 Time to Maturity Influences the impact of a change in yield to maturity on valuation. Longer the maturity, the greater the impact of changes in yield.
21
10-21 Impact of Time to Maturity on Bond Prices
22
10-22 Determining Yield to Maturity from the Bond Price The yield to maturity (Y), that will equate the interest payments ( ) and the principal payments ( ) to the price of the bond ( ). –Assuming that a 15 year bond pays $110 per year (11%) in interest and $1,000 after 15 years in principal repayment. –Choosing an initial percentage to try as a discount rate, we have:
23
10-23 Relationship Between Time to Maturity and Bond Price
24
10-24 Example - 13% Discount Rate Present value of interest payments: Present value of principal payment at maturity Total present value
25
10-25 Example – 12% Discount Rate Present value of interest payments Present value of principal payment at maturity Total present value
26
10-26 Formula for Bond Yield Weighted average is used to get the average investment over 15 year holding period.
27
10-27 Semiannual Interest and Bond Prices A 10% interest rate may be paid as $50 twice a year in the case of semiannual payments. To make the conversion: –Divide the annual interest rate by two. –Multiply the number of years by two. –Divide the annual yield to maturity by two. Assuming a 10%, $1,000 par value bond has a maturity of 20 years, the annual yield at 12%: –10%/2 = 5% semiannual interest rate; hence 5% X $1,000 = %50 semiannual interest. –20 X 2 = 40 periods to maturity –12%/2 = 6% yield to maturity, expressed on a semiannual basis.
28
10-28 Semiannual Interest and Bond Prices (cont’d) At a present value of a $50 annuity for the 40 periods, at discount rate of 6%: –Present value of interest payments –Present value of principal payment at maturity –Total present value
29
10-29 Valuation and Preferred Stock Preferred stock represents a perpetuity, having no maturity date. –It has a fixed dividend payment. –It has no binding contractual obligation of interest on debt. –Being a hybrid security, it does not have: The ownership privilege of a common stock. The legal provisions that could be enforced on debt.
30
10-30 Perpetuity of a Preferred Stock Where, = the price of the preferred stock; = the annual dividend for the preferred stock (constant); = required rate of return (discount rate) applied to preferred stock dividends. A more usable formula is: Assuming, the annual dividend is $10, and the stockholder requires a 10% rate of return, the price of the preferred stock would be:
31
10-31 Perpetuity of a Preferred Stock (cont’d) If the rate of return required by security holders change, the value of the preferred stock also changes. The longer the period of an investment, the greater the impact of a change in the require rate of return. With perpetual security, the impact is at a maximum. Assuming that the required rate of return has increased to 12%. The value of the preferred stock would be: If it were reduced to 8%, the value of the preferred stock would be:
32
10-32 Determining the Rate of Return (Yield) from the Market Price Assuming the annual preferred dividend ( ) is $10 and the price of the preferred stock ( ) is $100, the required rate of return (yield): A higher market price provides quite a decline in the yield:
33
10-33 Valuation of Common Stock Interpreted by the shareholder as the present value of an expected stream of future dividends. The ultimate value of any holding lies with: –The distribution of earnings in the form of dividend payments. The earnings must be translated into cash flow for the stockholder.
34
10-34 Dividend Valuation Model Where, = Price of stock today; D = Dividend for each year; = the required rate of return for common stock (discount rate). This formula, with modifications is generally applied to three different situations: –No growth in dividends. –Constant growth in dividends. –Variable growth in dividends.
35
10-35 No Growth in Dividends The common stock pays a constant dividend as in the case of a preferred stock. This is not a very popular option. Where, = Price of the common stock; = Current annual common stock dividend (constant); = Required rate of return for common stock. Assuming = $1,86 and = 12%, the price of the stock would be:
36
10-36 Constant Growth in Dividends The general valuation process is shown: Where, = Price of common stock today; = Dividend in year 1, ; = Dividend in year 2,, and so on; g = Constant growth rate in dividends; = Required rate of return for common stock (discount rate).
37
10-37 Constant Growth in Dividends (cont’d) Assuming: – = Last 12 month’s dividend (assume $1.87); – = First year, $2.00 (growth rate, 7%); – = Second year, $2.14 (growth rate, 7%); – = Third year, $2.29 (growth rate, 7%) etc; – = Required rate of return (discount rate), 12%.
38
10-38 Constant Growth Dividend Valuation Model Where: = Price of the stock today; = Dividend at the end of the first year; = Required rate of return (discount rate); g = Constant growth rate in dividends. Based on the current example; = $2.00; =.12; g =.07. is computed as:
39
10-39 Stock Valuation Based on Future Stock Value Assumption: To know the present value of an investment. –Stock is held on for three years and then sold. –Adding the present value of three years of dividends, and the present value of the stock price after three years gives the present value of the benefits. –The appropriate formula to be used is:
40
10-40 Determining the Required Rate of Return from the Market Price Determining the required rate of return, knowing the first year’s dividend, the stock price, and the growth rate (g): Assuming; = Required rate of return (to be solved); = Dividend at the end of the first year, $2.00; = Price of the stock today, $40; g = Constant growth rate 7%, we have: = $2.00 + 7% = 5% + 7% = 12% $40
41
10-41 Determining the Required Rate of Return from Market Price (cont’d) The stockholder is receiving a current dividend plus anticipated growth in the future. –If the dividend yield is low, the growth rate must be high to provide the necessary return. –If the dividend rate is low, a high dividend yield will be expected. –The first term represent the dividend yield the stockholder will receive. –The second represents the anticipated growth in dividends, earnings, and stock price.
42
10-42 Price-Earnings Ratio Concept and Valuation A multiplier applied to current earnings to determine the value of a share of stock in the market. Influenced by: –Earnings and sales growth of a firm. –Risk (or volatility in performance). –The debt-equity structure of the firm. –The dividend policy. –The quality of management.
43
10-43 Variable Growth in Dividends – Supernormal Growth Present value of dividends during the exceptional growth is observed. –Present value of the normal, constant dividends that follow the supernatural growth period: Is used to determine the price of the stock at the end of the supernatural growth period. –Discounting this price to the present and adding it to the present supernormal value: Gives us the current price of the stock.
44
10-44 Variable Growth in Dividends – No Dividends Approach 1: though no dividend is paid currently –The stockholders will be paid a cash dividend at a later date. The present value of their deferred payments may be used. Approach 2: –Take the present value of earnings per share for a number of periods. –Add that to the present value of the future anticipated stock price.
45
10-45 Stock Valuation under Supernormal Growth Analysis
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.