Download presentation
Presentation is loading. Please wait.
Published byOswald Dennis Modified over 9 years ago
1
1 Refinement parameters What are the parameters to be determined? atom positional parameters atom thermal motion parameters atom site occupancy parameters background function parameters peak shape parameters unit cell dimensions scale factor(s) sample displacement, sample transparency, zero-shift errors preferred orientation, absorption, porosity, extinction parameters
2
2 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6
3
3 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 axial divergence
4
4 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 axial divergence p 1 = –h 2 K 1 /3RR = diffractometer radius p 2 = –h 2 K 2 /3RK 1, K 2 = constants for collimator h = specimen width
5
5 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 flat sample
6
6 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 flat sample p 3 = – 2 /K 3 = beam divergence K 3 = constant
7
7 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 specimen transparency
8
8 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 specimen transparency p 4 = 1/2 eff R eff = effective linear absorption coefficient
9
9 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 specimen displacement p 5 = –2s/R s = displacement
10
10 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 zero error
11
11 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 p 4, p 5, & p 6 strongly correlated when refined together
12
12 Peak shift parameters 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 p 4, p 5, & p 6 strongly correlated when refined together When instrument correctly aligned, generally need get only p 5
13
13 Peak shift parameters 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 In GSAS: where:
14
14 Preferred orientation In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles
15
15 Preferred orientation In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry
16
16 Preferred orientation In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry soso s S = s - s o
17
17 Preferred orientation In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry
18
18 Preferred orientation March-Dollase function (a la GSAS) plates needles
19
19 Preferred orientation March-Dollase function (a la GSAS) plates needles # symmetrically equivalent reflections multiplier in intensity equation
20
20 Preferred orientation March-Dollase function (a la GSAS) plates needles # symmetrically equivalent reflections multiplier in intensity equation
21
21 Preferred orientation March-Dollase function (a la GSAS) plates needles # symmetrically equivalent reflections multiplier in intensity equation preferred orientation parameter (refined)
22
22 Preferred orientation March-Dollase function (a la GSAS) plates needles # symmetrically equivalent reflections multiplier in intensity equation preferred orientation parameter (refined) angle betwn orientation axis & diffraction vector for hkl
23
23 Preferred orientation March-Dollase function (a la GSAS)
24
24 Preferred orientation Spherical harmonics (a la GSAS) hkl sample orientation
25
25 Preferred orientation Spherical harmonics (a la GSAS) hkl sample orientation harmonic coefficients harmonic functions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.