Download presentation
Presentation is loading. Please wait.
Published byHillary Adela Little Modified over 9 years ago
1
Lesson Title Arithematic Progression (A.P.) Subject :- Mathematics Class :- 10 th Time Required :- 35 to 40 minutes
2
General Objectives To develop the mental ability of the students. To develop the logical reasoning of the Students.
3
Specific Objectives Upon the completion of the lesson the students will be able to To determine the n th term (General term)of an Arithmetic Progression and give the examples thereof. To solve the problems related to n th term (General term)of an A. P.
4
Skills to be developed 1. Self Expression 2. Co-relation of the topic / knowledge with daily life What mathematical skill(s) and understanding(s) will be developed? 3. Learning by experience /Doing
5
Previous Knowledge test The students will probably answer… a = 12 and d = 5 Rs 12 Rs 17 Rs 22 Rs 27 - - - - - - - - - - If Pankaj saves Rs 5 daily from his pocket money. What would be the list / pattern of saved money each day. Can you identify the first term,and common difference in this A.P. if he has Rs. 12 in the begining. (The problem was studied in previos lesson)
6
Ask: Can you tell the general form of an A.P. The students may answer a, a+d, a+2d, a+3d, - - - - - - - - - Ask : Can you tell how much money will he save after 9 days ? The Students may answer after making large calculations. Ask: Can you tell how much money will he save after 31 days ? Students are not able to answer.
7
Introduction of the Topic Say : well students, there is a formula in an A.P. which is called the General term (n th term ). With the help of this formula we will be able to find answer of above problem very easily…..
8
Discussion a = 12, d =5 First term, a = 12+0(5) Second term, a+d =12 +1(5) Third term a+2d = 12+ 2(5) Fourth term a+3d = 12 + 3(5) - - - - - - - - - - - - - - - - - - - 9 th term a+8d =12 +8(5) - - - - - - - - - - - - - - - - - - n th term a n = a + (n-1)d Note :- n is any positive integer. If we know any three terms in above equation then we can find the value of the fourth. Develop the following pattern with the help of students
9
As we have now arrived on an expression for General term for an A.P. let us find the solution for our problem……. What will be the saved money after 9 days 9 th term = a+8d =12 + 8(5) = 12 + 40 = 52 What will be the saved money after 31 days Let the students work it out
10
Can you tell in how many days Pankaj will save Rs 492. Here a = 12, d = 5 and a n = 492, we have to find n using a n = a + (n-1)d Students may answer after calculation, n = 97
11
Work in Group Divide the class in small groups of 3-4 students and provide each group with a problem. An example is given below Complete the following A.P. 2, ___, 26 6, 13,___, ___,34 ___, 6.5, 8,___,11 -4, -2,____,___,___, 6 ___, 38, ___, ___, -7, -22.
12
WORKSHEET a d n a n 738 - - - - - - -18 - - - - -100 -- - - --318-5 -18.92.5- - 3.6 3.50105 - - - - -
13
HOME ASSIGNMENT Meena works in a firm. Her salary is Rs 8000 per month, with an annual increment of Rs. 500. (i)What would be her salary per month in the fifth year. (ii) After how many years of service her salary would be Rs. 20000.
14
Prepared by Sh Pawan Kumar, Lect. Maths,GSSS Sihunta, Distt Chamba. Sh Bhim Singh, Lect. Maths,GSSS Drang, Distt. Mandi. Sh Dheeraj Vyas, Lect. Maths, GSSS khalet, Distt Kangra. Sh Om Prakash, T.G.T. (N/M,), GSSS Chandi, Distt Solan.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.