Presentation is loading. Please wait.

Presentation is loading. Please wait.

SENIOR THESIS PRESENTATION An Evaluation of Water-Side Economics & Emissions Sinai Hospital South Tower Vertical Expansion 2401 W. Belvedere Ave. | Baltimore,

Similar presentations


Presentation on theme: "SENIOR THESIS PRESENTATION An Evaluation of Water-Side Economics & Emissions Sinai Hospital South Tower Vertical Expansion 2401 W. Belvedere Ave. | Baltimore,"— Presentation transcript:

1 SENIOR THESIS PRESENTATION An Evaluation of Water-Side Economics & Emissions Sinai Hospital South Tower Vertical Expansion 2401 W. Belvedere Ave. | Baltimore, MD 21215 Presented By: Anly Lor | Mechanical Option The Pennsylvania State University Department of Architectural Engineering April 15, 2009 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

2 Presentation Outline 1.Existing Conditions  Site, Architecture, Mechanical Systems 2.Chilled Water Plant Redesign  Thermal Energy Storage 3.Structural Impact *Architectural Breadth Not Presented 4.Domestic Hot Water System Redesign  Solar Water Heating 5.Final Thoughts Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

3 Existing Conditions Site & Architecture  Three additional stories, penthouse, helipad, six-story link & lobby ~ 120,000 SF  Six-story link connects South Tower to North Tower (General Hospital)  Construction cost ~ $28,000,000/$230 per SF Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

4 Existing Conditions Function New Vertical Expansion Existing South Tower G 1 2 3 4 5 6 Intermediate Care Unit ~ 27,000 SF Traumatic Brain Injury ~ 27,000 SF Intensive Care Unit ~ 27,000 SF P Penthouse/New Mechanical Emergency Center (ER-7) Cardiology Neurology Basement/Existing Mechanical  120+ additional beds (patient, isolation, & operating rooms) Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

5 Existing Conditions Mechanical Systems AIR SIDE  Medium-pressure VAV supply & return  Two new AHUs provide 136,000 CFM additional capacity  Two existing AHUs provide redundancy  New dedicated exhaust system for isolation rooms  Individual patient room SATUs  Ductwork extended down from penthouse through two mechanical shafts WATER SIDE  New 2,000-ton variable speed centrifugal chiller, associated pumps, & cooling tower  Space allocated in penthouse for future 2,000-ton chiller, pumps, & tower  Existing heating hot water, steam, & domestic water mains extended from third floor  Three 4,545 MBH steam-to-hot water converters on ground floor Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

6 Mechanical System Redesign Background Hospitals in the U.S spend an average of $1.93 per SF per year in electricity costs Health care facilities consume the 3 rd most energy per SF of all building types in the U.S. Source: U.S. Department of Energy Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 76% 8% 16%

7 Mechanical System Redesign Objectives  Reduce operating costs  Thermal energy storage  Alter plant load profile  Utilize time-of-use electric utility rates  Solar water heating  Use solar collectors to heat domestic water  Achieve a viable payback period  Reduce greenhouse gas emissions  Renewable energy Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

8 Chilled Water Plant Redesign Load Profiling  Only expansion modeled: floors 4, 5, 6 Cooling Plant Design Day Load (tons)  Modeled by TRACE 700 Total Plant Load: 12,345 ton-hr Average Hourly Plant Load: 515 tons Peak Hourly Plant Load: 619 tons Load Factor: 83.2% Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

9 Chilled Water Plant Redesign Load Shifting  Time-of-use electric utility rates highest from 7AM – 9PM VERTICAL EXPANSION CAPACITY Additional firm capacity for previous construction (non- shaded region) Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

10 Chilled Water Plant Redesign Load Shifting  7,613 ton-hr of cooling capacity moved from peak hours to off-peak hours THERMA L ENERGY STORAG E NORMAL CHILLER OPERATIO N Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

11 Chilled Water Plant Redesign Load Shifting  Future chiller can still provide cooling capacity for future loads THERMA L ENERGY STORAG E NORMAL CHILLER OPERATIO N Future capacity for future loads Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

12 Chilled Water Plant Redesign Sizing  Ice storage utilized  7,613 ton-hr required  CALMAC ICEBANK® storage tanks used  Provide 162 ton-hr capacity per tank  47 storage tanks needed  18,000 ft³ of space  Chilled water tank would have required 83,000 ft³ of space Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

13 Chilled Water Plant Redesign Sequence Of Operation CHARGE CYCLE (9PM – 7AM)  CH-1 meets South Tower Vertical Expansion cooling load  CH-2 charges storage tanks through internal freeze (ice mode)  McQuay WDC126 chiller has normal mode and ice mode  Ethylene glycol-based industrial coolant can be used in standard equipment Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  

14 Chilled Water Plant Redesign Sequence Of Operation DISCHARGE CYCLE (7AM – 9PM)  CH-1 discharges storage tanks through internal melt to meet South Tower Vertical Expansion cooling load  CH-2 is off Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 

15 Chilled Water Plant Redesign Sequence Of Operation FUTURE DISCHARGE CYCLE (7AM – 9PM)  CH-1 discharges storage tanks through internal melt to meet South Tower Vertical Expansion cooling load  CH-2 operates in parallel with CH-1 to meet future cooling load (normal mode) Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  

16 Chilled Water Plant Redesign Cost Analysis: Rates  Take advantage of time-of-use electric utility rates NON-TIME-OF-USE RATES Summer (Jun-Sep)Winter (Oct- May) TIME-OF-USE RATES Summer (Jun-Sep)Winter (Oct- May) Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

17 Chilled Water Plant Redesign Cost Analysis: Operation CURRENT DESIGN  519,023 kWh/year @ 10.0¢/kWh  718,426 kWh/year @ 11.6¢/kWh REDESIGN (w/TES)  478,950 kWh/year @ 7.6¢/kWh  432,518 kWh/year @ 8.3¢/kWh  119,738 kWh/year @ 9.5¢/kWh $134,423 $82,976 Annual Savings:  $51,447  $0.43 per SF  2.817¢/kWh Chiller Full Load Kilowatts = 1,255 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

18 Chilled Water Plant Redesign Cost Analysis: Payback Installed cost of thermal energy storage:  $100/ton-hr  $761,300 first cost  $51,447 annual operating cost savings Simple payback period: 14.8 years Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

19 Structural Impact Tank Configuration Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 BEAM LOADS  W12x26  68 kips  W18x35  127.5 kips

20 Structural Impact Beam Resizing Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  The required section modulus and moment of inertia were determined based on subjected load for each beam `Allowable Section ModulusAllowable Moment Of Inertia W12x2633.4204 W18x3557.6510 Required Section ModulusRequired Moment Of Inertia W12x261342,207 W18x352915,508 Allowable Section ModulusAllowable Moment Of Inertia W24x841962,370 W27x1464115,630  Possibly relocate storage tanks to reduce structural impact!  The existing beams were severely undersized  Two new beams were proposed to meet the required section modulus and moment of inertia

21 Domestic Hot Water System Redesign Overview South Tower Vertical Expansion hot water demand:  145,000 BTU/hr  60°F cold water supply, 140°F hot water distribution  Solar energy will account for all domestic water heating (initial goal)  145°F fluid temperature required (hot water distribution temperature plus 5°F)  Heliodyne solar flat-plate collectors used (blue sputtered)  High temperature fluid used  Dyn-O-Flo HD propylene glycol with inhibitors in a 50/50 solution with water Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

22 Domestic Hot Water System Redesign Solar Study: Baltimore, MD  Solar collectors are south-facing (maximum absorption)  Solar collectors are tilted at an angle of 34° (recommended: latitude minus 5°)  Must account for collector efficiency (higher fluid temperature  lower efficiency) Source: National Solar Radiation Database Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

23 Domestic Hot Water System Redesign Sizing  Domestic water heating demand was evaluated for month with smallest solar radiation  December: 6,753 BTU/ft²/month  15,460 ft² of solar collection area required  Equivalent to 413 solar flat-plate collectors Problem: Not practical! Solution:  Partial solar water heating  Lower fluid temperature  higher efficiency Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

24 Domestic Hot Water System Redesign Sizing Cold Water Supply Temperature Fluid Temperature Solar Water Heating ∆T Collector Efficiency # Of Collectors Required 601458038.83%413 601357042.05%333 601256045.27%265 601155048.49%206 601054051.71%155 60953054.93%109 60852058.15%69 60751061.37%33 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  For the month of December

25 Domestic Hot Water System Redesign Schematic  COLLECTOR LOOP  Fluid enters solar collector array and absorbs solar energy  Fluid enters heat exchanger and transfers heat to water in storage loop  STORAGE LOOP  Cold water supply enters heat exchanger and absorbs heat from fluid in collector loop  Hot water is stored and heated to 140°F by steam-to-hot water converter before distribution Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  

26 Domestic Hot Water System Redesign Cost Analysis Installed cost of solar collectors:  $75/ft² For 33 installed solar collectors:  $91,697 first cost  $6,092 annual operating cost savings Simple payback period: 15.1 years Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

27 Domestic Hot Water System Redesign Cost Analysis Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

28 Domestic Hot Water System Redesign Emissions Analysis For 33 installed solar collectors:  189,000 lbs of carbon dioxide and carbon dioxide equivalents are removed from the environment  Which is equivalent to: 20 passenger vehicles driving 1,000 miles every month @ 25 mpg Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

29 Conclusions  Health care facilities have a median lifetime of 65 years  66% survive at least 48 years  Thermal energy storage is a viable option  $51,447 annual operating cost savings  14.8-year payback period is achievable  Low maintenance equipment  longer life cycle  Solar water heating can be considered at small scales in mixed climates  $6,092 annual operating cost savings for 33 installed solar collectors  15.1-year payback period is achievable  Solar collectors have an average lifespan greater than twenty years  Using renewable energy removes the equivalent greenhouse gas emissions of 20 passenger vehicles Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30

30 QUESTIONS? Sinai Hospital South Tower Vertical Expansion 2401 W. Belvedere Ave. | Baltimore, MD 21215 Presented By: Anly Lor | Mechanical Option The Pennsylvania State University Department of Architectural Engineering April 15, 2009 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30 Introduction  Existing Conditions  Thermal Energy Storage  Structural Impact  Solar Water Heating  Final Thoughts 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30


Download ppt "SENIOR THESIS PRESENTATION An Evaluation of Water-Side Economics & Emissions Sinai Hospital South Tower Vertical Expansion 2401 W. Belvedere Ave. | Baltimore,"

Similar presentations


Ads by Google