Presentation is loading. Please wait.

Presentation is loading. Please wait.

AAE450 Spring 2009 Kelly Leffel 3/0509 Structures and Thermal Lunar Descent Phase Lander Integration Lander Thermal Control Kelly Leffel Structures and.

Similar presentations


Presentation on theme: "AAE450 Spring 2009 Kelly Leffel 3/0509 Structures and Thermal Lunar Descent Phase Lander Integration Lander Thermal Control Kelly Leffel Structures and."— Presentation transcript:

1 AAE450 Spring 2009 Kelly Leffel 3/0509 Structures and Thermal Lunar Descent Phase Lander Integration Lander Thermal Control Kelly Leffel Structures and Thermal 1

2 AAE450 Spring 2009 Thermal Control – 100 g Kelly Leffel Structures and Thermal 2 Mass (kg)Dimensions (m) MLI Blanket3.1 Aluminum Plate1.40.5 cm thick, 0.1 m^2 Heat Pipe (2)6.6 5 m long, 0.0788 diameter Radiators (2)4.760.5 cm thick, 0.42 m side Ammonia (2)0.038 Hydrazine6.5 Tank + vent pipe0.5Sphere (0.12 radius) Heaters (6 heaters at 5 W)0.5Flat (on equipments/tanks) Total23.4 kg

3 AAE450 Spring 2009 Thermal Control – 10 kg Kelly Leffel Structures and Thermal 3 Mass (kg)Dimensions (m) MLI Blanket 2.0 Aluminum Plate1.40.5 cm thick, 0.1 m^2 Heat Pipe (2)5.45 m long, 0.0644 diameter Radiators (2)3.90.5 cm thick, 0.38 m side Ammonia (2)0.032 Hydrazine4.5 Tank + vent pipe0.35Sphere (0.11 radius) Heaters (6 heaters at 5 W)0.5Flat (on equipment/tanks) Total18.1 kg

4 AAE450 Spring 2009 BACK-UP SLIDES Kelly Leffel Structures and Thermal 4 MLI Blanket 25 layers Aluminized Mylar (0.007 g/cm^2) Effective emissivity= 0.005 Q = e*(A)*sb*(Th^4-Tc^4) e = Effective emissivity = 0.005 A = Surface area (changes for each lander) sb = Stefan-Boltzmann constant = 5.67 *10^-8 J/K^4.m^2.s Th = Hot temperature (temperature in the sun) = 393 K Tc = Cold temperature (temperature in the lander) = 293 K Additional 0.4 kg on the 100 g case for the ball storage box

5 AAE450 Spring 2009 Kelly Leffel Structures and Thermal 5 Heat needed to be removed Assume 70% efficient equipment With 40 Watts required, 12 Watts of heat released Communication Equipment Heat 100g – 49 Watts 10 kg – 38 Watts Difference is due to the change in the surface area

6 AAE450 Spring 2009  Communication Equipment has a Max Temperature of 313 K, keep at 303 K as a factor of safety  Keep Lander Operating Temperature around 293 K  Similar Thermal Control as the OTV –Area of Plate : 0.1 m^2 –Aluminum (Al) thermal conductivity : 236 W/(m*K) –Al density: 2700 kg/m^3 –Thickness < AK(T 1 - T 2 )/q < 3.8 m (for both cases) Choose 0.5 cm ( 0.005 m) –Mass of plate = density * thickness * area = 1.4 kg Kelly Leffel Structures and Thermal 6 Aluminum Plate

7 AAE450 Spring 2009 Ammonia Latent heat of vaporization of Ammonia: 1371 kJ/kg Mass (100 g) = 0.061 kW * 450 sec /(1371 kJ/kg) = 0.02 kg Mass (10 kg) = 0.050 kW * 450 sec /(1371 kJ/kg) = 0.017 kg Aluminum Heat Pipes (100g) Volume needed to simulate P=1 atm : 0.02313 m^3 Choose pipe of 5 m long 0.00463 m^2 cross sectional area pi*r i ^2 = 0.00463 m^2 : r i = 0.0384 m, r o = 0.0394 m Mass = 2700 * pi * (r o ^2 – r i ^2) * length = 3.3 kg Kelly Leffel Structures and Thermal 7 Heat Pipes

8 AAE450 Spring 2009 Heat Pipe Continued  Aluminum (10 kg) –Volume : 0.01532 m^3, choose length = 5 m –0.00306 m^2 cross sectional area –pi*r i ^2 = 0.00306 m^2 : r i = 0.0312 m, r o = 0.0322 m –Mass = 2700*pi*(0.0322^2-0.0312^2)*5 = 2.7 kg  Radiators –Dissipate 61 and 50 Watts –Emissivity of 0.92 for white paint –Area of the radiators:0.1762 m^2(100 g) and 0.1444 m^2 (10kg) –Mass = 2.38kg(100 g), 1.95kg (10 kg) Kelly Leffel Structures and Thermal 8

9 AAE450 Spring 2009 Matlab Code Kelly Leffel Structures and Thermal 9

10 AAE450 Spring 2009 Matlab Code Continued Kelly Leffel Structures and Thermal 10

11 AAE450 Spring 2009 References  Lander Phase Group for Masses  Ryan Nelson for Lander Dimensions  Adham Fakhry for MLI/hydrazine help  Ian Meginnis for heat pipe help  Spacecraft Thermal Control Handbook Volume I and II for Thermal Control data  Robert Manning for MLI effective emissivity Kelly Leffel Structures and Thermal 11


Download ppt "AAE450 Spring 2009 Kelly Leffel 3/0509 Structures and Thermal Lunar Descent Phase Lander Integration Lander Thermal Control Kelly Leffel Structures and."

Similar presentations


Ads by Google