Download presentation
Presentation is loading. Please wait.
Published byEvelyn Houston Modified over 9 years ago
1
Maximum Likelihood Estimates and the EM Algorithms I Henry Horng-Shing Lu Institute of Statistics National Chiao Tung University hslu@stat.nctu.edu.tw 1
2
Part 1 Computation Tools 2
3
Computation Tools R (http://www.r-project.org/): good for statistical computinghttp://www.r-project.org/ C/C++: good for fast computation and large data sets More: http://www.stat.nctu.edu.tw/subhtml/source /teachers/hslu/course/statcomp/links.htm http://www.stat.nctu.edu.tw/subhtml/source /teachers/hslu/course/statcomp/links.htm 3
4
The R Project R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. Similar to the commercial software of Splus. C/C++, Fortran and other codes can be linked and called at run time. More: http://www.r-project.org/http://www.r-project.org/ 4
5
Download R from http://www.r-project.org/ http://www.r-project.org/ 5
6
Choose one Mirror Site of R 6
7
Choose the OS System 7
8
Select the Base of R 8
9
Download the Setup Program 9
10
Install R Double click R-icon to install R 10
11
Execute R Interactive command window 11
12
Download Add-on Packages 12
13
Choose a Mirror Site Choose a mirror site close to you 1. 2. 13
14
Select One Package to Download Choose one package to download, like rgl. 1. 2. 14
15
Load Packages There are two methods to load packages: Method 1: Click from the menu bar Method 2: Type “ library(rgl) ” in the command window 15
16
Help in R (1) What is the loaded library? help(rgl) 16
17
Help in R (2) How to search functions for key words? help.search( “ key words ” ) It will show all functions has the key words. help.search( “ 3D plot ” ) Function name (belong to which package) description 17
18
Help in R (3) How to find the illustration of function? ?function name It will show the usage, arguments, author, reference, related functions, and examples. ?plot3d 18
19
R Operators (1) Mathematic operators: +, -, *, /, ^ Mod: % Sqrt, exp, log, log10, sin, cos, tan, … 19
20
R Operators (2) Other operators: :sequence operator %*%matrix algebra, =inequality ==, !=comparison &, &&, |, ||and, or ~formulas <-, =assignment 20
21
Algebra, Operators and Functions >1+2 [1] 3 >1>2 [1] FALSE >1>2|2>1 [1] TRUE >A=1:3 >A [1] 1 2 3 >A*6 [1] 6 12 18 >A/10 [1] 0.1 0.2 0.3 >A%2 [1] 1 0 1 >B=4:6 >A*B [1] 4 10 18 >t(A)%*%B [1] [1] 32 >A%*%t(B) [1] [2] [3] [1] 4 5 6 [2] 8 10 12 [3] 12 15 18 >sqrt(A) [1] 1.000 1.1414 1.7320 >log(A) [1] 0.000 0.6931 1.0986 >round(sqrt(A),2) [1] 1.00 1.14 1.73 >ceiling(sqrt(A)) [1] 1 2 2 >floor(sqrt(A)) [1] 1 1 1 >eigen(A%*%t(B)) $values [1] 3.20e+01 5.83e-16 2.48e-16 $vectors [1] [2] [3] [1] 0.2672 0.3273 -0.8890 [2] 0.5345 -0.5217 0.2530 [3] 0.8017 0.4665 0.3810 21
22
Variable Types ItemDescriptions Vector X=c(10.4,5.6,3.1,6.4) or Z=array(data_vector, dim_vector) Matrices X=matrix(1:8,2,4) or Z=matrix(rnorm(30),5,6) FactorsStatef=factor(state) Listspts = list(x=cars[,1], y=cars[,2]) Data Frames data.frame(cbind(x=1, y=1:10), fac=sample(LETTERS[1:3], 10, repl=TRUE)) Functionsname=function(arg_1,arg_2,…) expression Missing Values NA or NAN 22
23
Define Your Own Function (1) Use “ fix(myfunction) ” # a window will show up function (parameter){ statements; return (object); # if you want to return some values } Save the document Use “ myfunction(parameter) ” in R 23
24
Define Your Own Function (2) Example: Find all the factors of an integer 1. 2. 3. 24
25
Define Your Own Function (3) When you leave the program, remember to save the work space for the next use, or the function you defined will disappear after you close R project. 25
26
Read and Write Files Write Data to a CSV File Write Data to a TXT File Read TXT and CSV Files Demo 26
27
Write Data to a TXT File Usage: write(x,file,…) >X=matrix(1:6,2,3) >X [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 >write(t(X),file=“d:/out2.txt”,ncolumns=3) >write(X,file=“d:/out3.txt”,ncolumns=3) d:/out2.txt 1 3 5 2 4 6 d:/out3.txt 1 2 3 4 5 6 27
28
Write Data to a CSV File d:/out4.txt 1,2 3,4 5,6 d:/out5.txt 1,3,5 2,4,6 Usage: write.table(x,file=“foo.csv”,sep=“,”,…) > X=matrix(1:6,2,3) > X [,1] [,2] [,3] [1,] 1 3 5 [2,] 2 4 6 >write.table(t(X),file=“d:/out4.txt”,sep=“,”,col.names=FALS E,row.names=FALSE) >write.table(X,file=“d:/out5.txt”,sep=“,”,col.names=FALSE, row.names=FALSE) 28
29
Read TXT and CSV Files Usage: read.table(file,...) >X=read.table(file="d:/out2.txt") >X v1 v2 v3 1 1 3 5 2 2 4 6 > Y=read.table(file="d:/out5.txt",sep=",",header=FALSE) >Y V1 V2 1 1 2 2 3 4 3 5 6 29
30
Demo >Data=read.table(file="d:/01.csv",header=TRUE,sep=",") >Data Y X1 X2 1 2.651680 13.808990 26.75896 2 1.875039 17.734520 37.89857 3 1.523964 19.891030 26.03624 4 2.984314 15.574260 30.21754 5 10.423090 9.293612 28.91459 6 0.840065 8.830160 30.38578 7 8.126936 9.615875 32.69579 >mean(Data$Y) [1] 4.060727 >boxplot(Data$Y) 01.csv 30
31
Part 2 Motivation Examples 31
32
Example 1 in Genetics (1) Two linked loci with alleles A and a, and B and b A, B: dominant a, b: recessive A double heterozygote AaBb will produce gametes of four types: AB, Ab, aB, ab F ( Female) 1- r ’ r ’ (female recombination fraction) M (Male) 1-r r (male recombination fraction) A Bb a B A b a a B b A A B b a 32
33
Example 1 in Genetics (2) r and r ’ are the recombination rates for male and female Suppose the parental origin of these heterozygote is from the mating of. The problem is to estimate r and r ’ from the offspring of selfed heterozygotes. Fisher, R. A. and Balmukand, B. (1928). The estimation of linkage from the offspring of selfed heterozygotes. Journal of Genetics, 20, 79 – 92. http://en.wikipedia.org/wiki/Genetics http://www2.isye.gatech.edu/~brani/isyebayes/ba nk/handout12.pdf http://en.wikipedia.org/wiki/Genetics http://www2.isye.gatech.edu/~brani/isyebayes/ba nk/handout12.pdf 33
34
Example 1 in Genetics (3) b a B A A B b a a bb aA BB A A B A B b a b a 1/2 a B b A A B b a ABabaBAb Male(1-r)/2 r/2 Female(1-r ’ )/2 r ’ /2 34
35
Example 1 in Genetics (4) MALE AB (1-r)/2 ab (1-r)/2 aB r/2 Ab r/2 FEMALEFEMALE AB (1-r ’ )/2 AABB (1-r) (1-r ’ )/4 aABb (1-r) (1-r ’ )/4 aABB r (1-r ’ )/4 AABb r (1-r ’ )/4 ab (1-r ’ )/2 AaBb (1-r) (1-r ’ )/4 aabb (1-r) (1-r ’ )/4 aaBb r (1-r ’ )/4 Aabb r (1-r ’ )/4 aB r ’ /2 AaBB (1-r) r ’ /4 aabB (1-r) r ’ /4 aaBB r r ’ /4 AabB r r ’ /4 Ab r ’ /2 AABb (1-r) r ’ /4 aAbb (1-r) r ’ /4 aABb r r ’ /4 AAbb r r ’ /4 35
36
Example 1 in Genetics (5) Four distinct phenotypes: A*B*, A*b*, a*B* and a*b*. A*: the dominant phenotype from (Aa, AA, aA). a*: the recessive phenotype from aa. B*: the dominant phenotype from (Bb, BB, bB). b* : the recessive phenotype from bb. A*B*: 9 gametic combinations. A*b*: 3 gametic combinations. a*B*: 3 gametic combinations. a*b*: 1 gametic combination. Total: 16 combinations. 36
37
Example 1 in Genetics (6) 37
38
Example 1 in Genetics (7) Hence, the random sample of n from the offspring of selfed heterozygotes will follow a multinomial distribution: 38
39
Example 1 in Genetics (8) Suppose that we observe the data of y = (y1, y2, y3, y4) = (125, 18, 20, 24), which is a random sample from Then the probability mass function is 39
40
Estimation Methods Frequentist Approaches: http://en.wikipedia.org/wiki/Frequency_probability Method of Moments Estimate (MME) http://en.wikipedia.org/wiki/Method_of_moments _%28statistics%29 Maximum Likelihood Estimate (MLE) http://en.wikipedia.org/wiki/Maximum_likelihood Bayesian Approaches: http://en.wikipedia.org/wiki/Bayesian_probability 40
41
Method of Moments Estimate (MME) Solve the equations when population means are equal to sample means: for k = 1, 2, …, t, where t is the number of parameters to be estimated. MME is simple. Under regular conditions, the MME is consistent! More: http://en.wikipedia.org/wiki/Method_of_moments _%28statistics%29 http://en.wikipedia.org/wiki/Method_of_moments _%28statistics%29 41
42
MME for Example 1 Note: MME can ’ t assure 42
43
MME by R 43
44
MME by C/C++ 44
45
Maximum Likelihood Estimate (MLE) Likelihood: Maximize likelihood: Solve the score equations, which are setting the first derivates of likelihood to be zeros. Under regular conditions, the MLE is consistent, asymptotic efficient and normal! More: http://en.wikipedia.org/wiki/Maximum_lik elihood 45
46
Example 2 (1) # of tossing head ( )probability 0(0,0,0)(1-p) 3 1(1,0,0) (0,1,0) (0,0,1)p(1-p) 2 2(0,1,1) (1,0,1) (1,1,0)p 2 (1-p) 3(1,1,1)p3p3 We toss an unfair coin 3 times and the random variable is If p is the probability of tossing head, then 46
47
Example 2 (2) Suppose we observe the toss of 1 heads and 2 tails, the likelihood function becomes One way to maximize this likelihood function is by solving the score equation, which sets the first derivative to be zero: 47
48
Example 2 (3) The solution of p for the score equation is 1/3 or 1. One can check that p=1/3 is the maximum point. (How?) Hence, the MLE of p is 1/3 for this example. 48
49
MLE for Example 1 (1) Likelihood MLE: A B C 49
50
MLE for Example 1 (2) Checking: (1) (2) (3) 50
51
Use R to find MLE (1) 51
52
Use R to find MLE (2) 52
53
Use C/C++ to find MLE (1) 53
54
Use C/C++ to find MLE (2) 54
55
Exercises Write your own programs for those examples presented in this talk. Write programs for those examples mentioned at the following web page: http://en.wikipedia.org/wiki/Maximum_li kelihood Write programs for the other examples that you know. 55
56
More Exercises (1) Example 3 in genetics: The observed data are (nO, nA, nB, nAB) = (176, 182, 60, 17) ~ Multinomial(r^2, p^2+2pr, q^2+2qr, 2pq), where p, q, and r fall in [0,1] such that p+q+r = 1. Find the likelihood function and score equations for p, q, and r. 56
57
More Exercises (2) Example 4 in the positron emission tomography (PET): The observed data are n*(d) ~Poisson(λ*(d)), d = 1, 2, …, D, and The values of p(b,d) are known and the unknown parameters are λ(b), b = 1, 2, …, B. Find the likelihood function and score equations for λ(b), b = 1, 2, …, B.. 57
58
More Exercises (3) Example 5 in the normal mixture: The observed data x i, i = 1, 2, …, n, are random samples from the following probability density function: Find the likelihood function and score equations for the following parameters: 58
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.