Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 8 Analysis of Variance and Covariance. 16-2 Effect of Coupons, In-Store Promotion and Affluence of the Clientele on Sales.

Similar presentations


Presentation on theme: "Lecture 8 Analysis of Variance and Covariance. 16-2 Effect of Coupons, In-Store Promotion and Affluence of the Clientele on Sales."— Presentation transcript:

1 Lecture 8 Analysis of Variance and Covariance

2 16-2 Effect of Coupons, In-Store Promotion and Affluence of the Clientele on Sales

3 16-3 Relationship Among Techniques Analysis of variance (ANOVA) is used as a test of means for two or more populations. The null hypothesis, typically, is that all means are equal. Analysis of variance must have a dependent variable that is metric (measured using an interval or ratio scale). There must also be one or more independent variables that are all categorical (nonmetric). Categorical independent variables are also called factors.

4 16-4 Relationship Among Techniques A particular combination of factor levels, or categories, is called a treatment. One-way analysis of variance involves only one categorical variable, or a single factor. In one-way analysis of variance, a treatment is the same as a factor level. If two or more factors are involved, the analysis is termed n-way analysis of variance. If the set of independent variables consists of both categorical and metric variables, the technique is called analysis of covariance (ANCOVA). In this case, the categorical independent variables are still referred to as factors, whereas the metric- independent variables are referred to as covariates.

5 16-5 Relationship Amongst t-Test, Analysis of Variance, Analysis of Covariance, & Regression One IndependentOne or More Metric Dependent Variable t Test Binary Variable One-Way Analysis of Variance One Factor N-Way Analysis of Variance More than One Factor Analysis of Variance Categorical (factors) Analysis of Covariance Categorical (f-rs) Interval covariates Regression Metric Independent Variables

6 16-6 One-way Analysis of Variance Business researchers are often interested in examining the differences in the mean values of the dependent variable for several categories of a single independent variable or factor. For example: Do the various segments differ in terms of their volume of product consumption? Do the brand evaluations of groups exposed to different commercials vary? What is the effect of consumers' familiarity with the store (measured as high, medium, and low) on preference for the store?

7 16-7 Statistics Associated with One-way Analysis of Variance eta 2 ( 2 ). The strength of the effects of X (independent variable or factor) on Y (dependent variable) is measured by eta 2 ( 2 ). The value of 2 varies between 0 and 1. F statistic. The null hypothesis that the category means are equal in the population is tested by an F statistic based on the ratio of mean square related to X and mean square related to error. Mean square. This is the sum of squares divided by the appropriate degrees of freedom.

8 16-8 Conducting One-way Analysis of Variance Interpret the Results If the null hypothesis of equal category means is not rejected, then the independent variable does not have a significant effect on the dependent variable. On the other hand, if the null hypothesis is rejected, then the effect of the independent variable is significant. A comparison of the category mean values will indicate the nature of the effect of the independent variable.

9 16-9 Illustrative Applications of One-way Analysis of Variance We illustrate the concepts discussed in this chapter using the data presented in Table 16.2. The department store is attempting to determine the effect of in-store promotion (X) on sales (Y). For the purpose of illustrating hand calculations, the data of Table 16.2 are transformed in Table 16.3 to show the store sales (Y ij ) for each level of promotion. The null hypothesis is that the category means are equal: H 0 : µ 1 = µ 2 = µ 3.

10 16-10 Effect of Promotion and Clientele on Sales Table 16.2

11 16-11 One-Way ANOVA: Effect of In-store Promotion on Store Sales Table 16.3 Cell means Level of CountMean Promotion High (1)108.300 Medium (2)106.200 Low (3)103.700 TOTAL306.067 Source of Sum ofdfMean F ratio F prob. Variationsquaressquare Between groups106.067253.033 17.944 0.000 (Promotion) Within groups79.800272.956 (Error) TOTAL185.867296.409

12 16-12 N-way Analysis of Variance In business research, one is often concerned with the effect of more than one factor simultaneously. For example: How do advertising levels (high, medium, and low) interact with price levels (high, medium, and low) to influence a brand's sale? Do educational levels (less than high school, high school graduate, some college, and college graduate) and age (less than 35, 35-55, more than 55) affect consumption of a brand? What is the effect of consumers' familiarity with a department store (high, medium, and low) and store image (positive, neutral, and negative) on preference for the store?

13 16-13 Two-way Analysis of Variance Source ofSum ofMean Sig. of Variationsquares dfsquare F F  Main Effects Promotion106.067 253.033 54.862 0.000 0.557 Coupon 53.333 153.333 55.172 0.000 0.280 Combined159.400 353.133 54.966 0.000 Two-way 3.267 21.633 1.690 0.226 interaction Model162.667 532.533 33.655 0.000 Residual (error) 23.200 240.967 TOTAL185.867 296.409 2 Table 16.4

14 16-14 Two-way Analysis of Variance Table 16.4 cont. Cell Means PromotionCoupon Count Mean High Yes 5 9.200 High No 5 7.400 Medium Yes 5 7.600 Medium No 5 4.800 Low Yes 5 5.400 Low No 5 2.000 TOTAL 30 Factor Level Means PromotionCoupon Count Mean High 10 8.300 Medium 10 6.200 Low 10 3.700 Yes 15 7.400 No 15 4.733 Grand Mean 30 6.067

15 16-15 Analysis of Covariance When examining the differences in the mean values of the dependent variable related to the effect of the controlled independent variables, it is often necessary to take into account the influence of uncontrolled (usually metric) independent variables. For example: In determining how different groups exposed to different commercials evaluate a brand, it may be necessary to control for prior knowledge. In determining how different price levels will affect a household's cereal consumption, it may be essential to take household size into account. We again use the data of Table 16.2 to illustrate analysis of covariance. Suppose that we wanted to determine the effect of in-store promotion and couponing on sales while controlling for the effect of clientele. The results are shown in Table 16.6.

16 16-16 Analysis of Covariance Sum ofMeanSig. Source of Variation SquaresdfSquare Fof F Covariance Clientele 0.8381 0.838 0.8620.363 Main effects Promotion 106.067253.03354.5460.000 Coupon 53.333153.33354.8550.000 Combined 159.400353.13354.6490.000 2-Way Interaction Promotion* Coupon 3.2672 1.633 1.6800.208 Model 163.505627.25128.0280.000 Residual (Error) 22.36223 0.972 TOTAL 185.86729 6.409 CovariateRaw Coefficient Clientele -0.078 Table 16.5

17 16-17 Issues in Interpretation Multiple Comparisons If the null hypothesis of equal means is rejected, we can only conclude that not all of the group means are equal. We may wish to examine differences among specific means. This can be done by specifying appropriate contrasts, or comparisons used to determine which of the means are statistically different. A priori contrasts are determined before conducting the analysis, based on the researcher's theoretical framework. Generally, a priori contrasts are used in lieu of the ANOVA F test. The contrasts selected are orthogonal (they are independent in a statistical sense).

18 16-18 Issues in Interpretation Multiple Comparisons A posteriori contrasts are made after the analysis. These are generally multiple comparison tests. They enable the researcher to construct generalized confidence intervals that can be used to make pairwise comparisons of all treatment means. These tests, listed in order of decreasing power, include least significant difference, Duncan's multiple range test, Student-Newman-Keuls, Tukey's alternate procedure, honestly significant difference, modified least significant difference, and Scheffe's test. Of these tests, least significant difference is the most powerful, Scheffe's the most conservative.

19 16-19 Multivariate Analysis of Variance Multivariate analysis of variance (MANOVA) is similar to analysis of variance (ANOVA), except that instead of one metric dependent variable, we have two or more. In MANOVA, the null hypothesis is that the vectors of means on multiple dependent variables are equal across groups. Multivariate analysis of variance is appropriate when there are two or more dependent variables that are correlated. If they are uncorrelated, use ANOVA on each of the dependent variables separately rather than MANOVA.

20 16-20 SPSS Windows One-way ANOVA can be efficiently performed using the program COMPARE MEANS and then One-way ANOVA. To select this procedure using SPSS for Windows click: Analyze>Compare Means>One-Way ANOVA … N-way analysis of variance and analysis of covariance can be performed using GENERAL LINEAR MODEL. To select this procedure using SPSS for Windows click: Analyze>General Linear Model>Univariate …


Download ppt "Lecture 8 Analysis of Variance and Covariance. 16-2 Effect of Coupons, In-Store Promotion and Affluence of the Clientele on Sales."

Similar presentations


Ads by Google