Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 4 Wafer Manufacturing and Epitaxy Growing

Similar presentations


Presentation on theme: "Chapter 4 Wafer Manufacturing and Epitaxy Growing"— Presentation transcript:

1 Chapter 4 Wafer Manufacturing and Epitaxy Growing
Hong Xiao, Ph. D. Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

2 Objectives Give two reasons why silicon dominate
List at least two wafer orientations List the basic steps from sand to wafer Describe the CZ and FZ methods Explain the purpose of epitaxial silicon Describe the epi-silicon deposition process. Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

3 Crystal Structures Amorphous Polycrystalline Single crystal
No repeated structure at all Polycrystalline Some repeated structures Single crystal One repeated structure Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

4 Amorphous Structure Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Book.htm

5 Polycrystalline Structure
Grain Boundary Grain Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

6 Single Crystal Structure
Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

7 Why Silicon? Abundant, cheap
Silicon dioxide is very stable, strong dielectric, and it is easy to grow in thermal process. Large band gap, wide operation temperature range. Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

8 Source: http://www.shef.ac.uk/chemistry/web-elements/nofr-key/Si.html
Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm Source:

9 Unit Cell of Single Crystal Silicon
Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

10 Crystal Orientations: <100>
z <100> plane y x Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

11 Crystal Orientations: <111>
z <111> plane <100> plane y x Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

12 Crystal Orientations: <110>
z <110> plane y x Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

13 <100> Orientation Plane
Basic lattice cell Atom Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

14 <111> Orientation Plane
Basic lattice cell Silicon atom Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

15 <100> Wafer Etch Pits
Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

16 <111> Wafer Etch Pits
Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

17 Illustration of the Defects
Impurity on substitutional site Silicon Atom Impurity in Interstitial Site Silicon Interstitial Vacancy or Schottky Defect Frenkel Defect Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

18 Dislocation Defects Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Book.htm

19 From Sand to Wafer Quartz sand: silicon dioxide
Sand to metallic grade silicon (MGS) React MGS powder with HCl to form TCS Purify TCS by vaporization and condensation React TCS to H2 to form polysilicon (EGS) Melt EGS and pull single crystal ingot Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

20 From Sand to Wafer (cont.)
Cut end, polish side, and make notch or flat Saw ingot into wafers Edge rounding, lap, wet etch, and CMP Laser scribe Epitaxy deposition Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

21 From Sand to Silicon SiO2 Heat (2000 ° C) + C ® Si + CO2
Sand Carbon MGS Carbon Dioxide Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

22 Silicon Purification I
Hydrochloride Reactor, 300 C Si + HCl  TCS Silicon Powder Condenser Filters Pure TCS with % Purifier Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

23 Polysilicon Deposition, EGS
Heat (1100 C) SiHCl 3 H 2 Si HCl TCS Hydrogen EGS Hydrochloride Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

24 Silicon Purification II
Process Chamber EGS H2 H2 and TCS Liquid TCS TCS+H2EGS+HCl Carrier gas bubbles Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

25 Electronic Grade Silicon
Source: Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

26 Crystal Pulling: CZ method
Single Crystal Silicon Seed Quartz Crucible Single Crystal silicon Ingot Molten Silicon Heating Coils 1415 °C Graphite Crucible Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

27 CZ Crystal Pullers Mitsubish Materials Silicon
Source: Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

28 Source: http://www.fullman.com/semiconductors/_crystalgrowing.html
CZ Crystal Pulling Source: Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

29 Floating Zone Method Poly Si Rod Molten Silicon Heating Coils Movement
Single Crystal Silicon Seed Crystal Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

30 Comparison of the Two Methods
CZ method is more popular Cheaper Larger wafer size (300 mm in production) Reusable materials Floating Zone Pure silicon crystal (no crucible) More expensive, smaller wafer size (150 mm) Mainly for power devices. Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

31 Ingot Polishing, Flat, or Notch
Flat, 150 mm and smaller Notch, 200 mm and larger Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

32 Wafer Sawing Coolant Orientation Notch Crystal Ingot Saw Blade
Ingot Movement Diamond Coating Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

33 Parameters of Silicon Wafer
Wafer Size (mm) Thickness (m m) Area (cm 2 ) Weight (grams) 279 20.26 1.32 381 45.61 4.05 100 525 78.65 9.67 125 625 112.72 17.87 150 675 176.72 27.82 200 725 314.16 52,98 300 775 706.21 127.62 50.8 (2 in) 76.2 (3in) Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

34 Wafer Edge Rounding Wafer movement Wafer Wafer Before Edge Rounding
Wafer After Edge Rounding Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

35 Wafer Lapping Rough polished conventional, abrasive, slurry-lapping
To remove majority of surface damage To create a flat surface Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

36 3 Si + 4 HNO3 + 6 HF  3 H2SiF6 + 4 NO + 8 H2O
Wet Etch Remove defects from wafer surface 4:1:3 mixture of HNO3 (79 wt% in H2O), HF (49 wt% in H2O), and pure CH3COOH. Chemical reaction: 3 Si + 4 HNO3 + 6 HF  3 H2SiF6 + 4 NO + 8 H2O Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

37 Chemical Mechanical Polishing
Pressure Slurry Wafer Holder Wafer Polishing Pad Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

38 200 mm Wafer Thickness and Surface Roughness Changes
After Wafer Sawing 914 mm 76 mm After Edge Rounding 914 mm 12.5 mm After Lapping 814 mm <2.5 mm After Etch 750 mm Virtually Defect Free After CMP 725 mm Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

39 Epitaxy Grow Definition Purposes Epitaxy Reactors Epitaxy Process
Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

40 Epitaxy: Definition Greek origin epi: upon taxy: orderly, arranged
Epitaxial layer is a single crystal layer on a single crystal substrate. Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

41 Epitaxy: Purpose Barrier layer for bipolar transistor
Reduce collector resistance while keep high breakdown voltage. Only available with epitaxy layer. Improve device performance for CMOS and DRAM because much lower oxygen, carbon concentration than the wafer crystal. Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

42 Epitaxy Application, Bipolar Transistor
Emitter Base Collector Al•Cu•Si SiO2 n + p n + p+ p+ n-Epi Electron flow n + Buried Layer P-substrate Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

43 Epitaxy Application: CMOS
Metal 1, Al•Cu W BPSG n+ n+ p+ p+ STI USG P-Well N-Well P-type Epitaxy Silicon P-Wafer Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

44 Silicon Source Gases Silane SiH4 Dichlorosilane DCS SiH2Cl2
Trichlorosilane TCS SiHCl3 Tetrachlorosilane SiCl4 Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

45 Dopant Source Gases Diborane B2H6 Phosphine PH3 Arsine AsH3
Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

46 DCS Epitaxy Grow, Arsenic Doping
Heat (1100 C) SiH2Cl2 Si HCl DCS Epi Hydrochloride AsH ® As /2 H2 Heat (1100 C) Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

47 Schematic of DCS Epi Grow and Arsenic Doping Process
SiH2Cl2 AsH3 H2 HCl Si AsH3 As H Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

48 Epitaxial Silicon Growth Rate Trends
Temperature (°C) 1300 1200 1100 1000 900 800 700 1.0 0.5 SiH4 Mass transport limited 0.2 Growth Rate, micron/min 0.1 SiHCl3 0.05 Surface reaction limited 0.02 SiH2Cl2 0.01 0.7 0.8 0.9 1.0 1.1 1000/T(K) Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

49 Barrel Reactor Radiation Heating Coils Wafers Hong Xiao, Ph. D.
www2.austin.cc.tx.us/HongXiao/Book.htm

50 Vertical Reactor Wafers Reactants Heating Coils
Reactants and byproducts Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

51 Horizontal Reactor Heating Coils Wafers Reactants
Reactants and byproducts Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

52 Epitaxy Process, Batch System
Hydrogen purge, temperature ramp up HCl clean Epitaxial layer grow Hydrogen purge, temperature cool down Nitrogen purge Open Chamber, wafer unloading, reloading Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

53 Single Wafer Reactor Sealed chamber, hydrogen ambient
Capable for multiple chambers on a mainframe Large wafer size (to 300 mm) Better uniformity control Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

54 Single Wafer Reactor Heat Radiation Heating Lamps Wafer Reactants
Reactants & byproducts Susceptor Quartz Lift Fingers Quartz Window Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

55 Epitaxy Process, Single Wafer System
Hydrogen purge, clean, temperature ramp up Epitaxial layer grow Hydrogen purge, heating power off Wafer unloading, reloading In-situ HCl clean, Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

56 Why Hydrogen Purge Most systems use nitrogen as purge gas
Nitrogen is a very stable abundant At > 1000 C, N2 can react with silicon SiN on wafer surface affects epi deposition H2 is used for epitaxy chamber purge Clean wafer surface by hydrides formation Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

57 Properties of Hydrogen
Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

58 Defects in Epitaxy Layer
Stacking Fault from Surface Nucleation Stacking Fault form Substrate Stacking Fault Dislocation Impurity Particle Hillock Epi Layer Substrate After S.M. Zse’s VLSI Technology Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

59 Future Trends Larger wafer size Single wafer epitaxial grow
Low temperature epitaxy Ultra high vacuum (UHV, to 10-9 Torr) Selective epitaxy Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

60 Summary Silicon is abundant, cheap and has strong, stable and easy grown oxide. <100> and <111> CZ and floating zone, CZ is more popular Sawing, edging, lapping, etching and CMP Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm

61 Summary Epitaxy: single crystal on single crystal
Needed for bipolar and high performance CMOS, DRAM. Silane, DCS, TCS as silicon precursors B2H6 as P-type dopant PH3 and AsH3 as N-type dopants Batch and single wafer systems Hong Xiao, Ph. D. www2.austin.cc.tx.us/HongXiao/Book.htm


Download ppt "Chapter 4 Wafer Manufacturing and Epitaxy Growing"

Similar presentations


Ads by Google