Presentation is loading. Please wait.

Presentation is loading. Please wait.

Main task  Upper atmospheres (and magnetospheres) in the context of solar/stellar wind plasma and radiation interaction Main research topics 1.Upper atmosphere.

Similar presentations


Presentation on theme: "Main task  Upper atmospheres (and magnetospheres) in the context of solar/stellar wind plasma and radiation interaction Main research topics 1.Upper atmosphere."— Presentation transcript:

1 Main task  Upper atmospheres (and magnetospheres) in the context of solar/stellar wind plasma and radiation interaction Main research topics 1.Upper atmosphere response to solar/stellar activity  Monte Carlo & test-particle upper atmosphere and SW-plasma interaction codes → atmosphere evolution, exoplanets 2.Exoplanet Magnetospheres  Structure, topology, and dynamics of exoplanetary magnetospheres Refereed publications (since Jan 2013)  Total: 15 (first author: 11) Educational activities (since Jan 2013)  PhD thesis: 1; Master theses: 2  Lecturing at University of Graz Upper Atmosphere Physics IWF/ÖAW1

2 Lead: Helmut Lammer Members  Staff: O. Archipov, M. L. Khodachenko, K. G. Kislyakova, H.I.M. Lichtenegger, M. Pfleger, J. Sasunov  Students: PhD: P. Odert; Master: I. Juvan, S.-C. Schiefer Cooperation within IWF  Atmosphere response to solar activity (Baur et al.)  Solar/stellar winds/radio signals & exoplanets (Fischer et al.)  Solar wind and magnetospheric interaction studies (Nakamura et al.)  Heliospheric physics (Narita et al.)  CoRoT/Cheops: exoplanet characterization (Steller et al.) Key external collaboration Austria: IfA, Univ. Vienna; Germany: DLR; Sweden: IRF; Finland: FMI; Belgium: University of Leuven; Spain: Univ. de les Illes Balears; Russia: ICM/RAS Krasnoyarsk, INASAN Moscow, Inst. of Laser Phys./RAS, Moscow State Univ. Who are we? IWF/ÖAW2

3 Extreme solar events → young Sun/stars  Thermosphere density response GRACE  Correlation with solar proxies  Upper atmosphere impact of super-flares Photochemical processes → suprathermal “hot” atoms (H, O, C, N)  Monte Carlo modeling of energetic neutral atoms (ENAs) and exosphere formation and escape  Model validation: VEX, MEX, Earth obs. IWF/ÖAW3 Upper Atmosphere Physics [Gröller et al., PSS, 2014]

4 4 Surface Sputtering / Stellar Dynamics IWF/ÖAW Surface sputtering → airless bodies  Plasma surface interaction  Particle release from surfaces due to solar radiation and plasma  Precursor studies: BepiColombo, JUICE Kepler stars photometry → deep mixing  Variation of 513 stellar LC spectral harmonics  Time scale  1 of the first rotational harmonic ~ theoretical turnover time  MLT of deep mixing  Remote probing of stellar deep convection IWF/ÖAW4 11  MLT Callisto: sputtered O exosphere

5 Escape of nebula-based or degassed protoatmospheres from early Solar System planets and “super-Earths” (exoplanets)  Hydro-code development  Thermosphere EUV heating  Atmosphere expansion  Thermal escape of H, O, C  Dragging of O, C, N, CO 2, etc.  Effect on density, radius-mass IWF/ÖAW5 Atmosphere Evolution [Rauer et al., Exp. Astron., 2014] [Lammer et al., MNRAS, 2014] Mars-size planetary embryo at 1 AU

6 Characterization of exoplanet exosphere-magnetosphere environments by UV observations and hydrogen cloud, stellar radiation and plasma interaction modeling  Hydrogen coronae modeling  ENA heating feedback studies  Plasma interaction & ion escape  Space weather effect studies  HST UV spectra reproduction IWF/ÖAW6 Exoplanet Environments [Kislyakova et al., A&A, 2014][Kislyakova et al., Astrobiol., 2013]

7 MHD simulations of the flow-driven magnetodisk formation No or weak rotation case: Stellar XUV   atm. heating & expansion  deformation of dipole field  inner region locked plasma  thin disk region  plasma follows field lines Experimental confirmation of the flow-driven magnetodisk formation  typical topology of magnetic field  electric current sheet in the equatorial plane IWF/ÖAW Exoplanet Magnetospheres 7

8 Solar/stellar plasma dynamics: Solar Orbiter  Tachocline, photosphere, chromosphere, corona Upper atmosphere solar activity response: MEX, VEX, LEOs, etc.  Hot C, O, N & H atom escape from Venus, Earth, Mars, exoplanets  Model validation on solar event (CMEs) studies at Earth’s thermosphere Solar activity & plasma response on Mercury’s and Jovian satellite surfaces: BepiColombo, JUICE  EUV, CME & plasma related particle release and exosphere formation Origin & evolution of atmospheres, exoplanets: CoRoT, CHEOPS  Protoatmosphere escape studies (sub- to super-Earths)  Upper atmosphere structure, radiation & particle heating  Stellar plasma electrodynamics/exoplanet and exo- magnetosphere hypotheses tests via Lyman-α diagnostic Future Plans: 2015-2018 IWF/ÖAW 8

9 Thank you IWF/ÖAW9

10 Doz. Dr. Helmut Lammer Career Summary since 1991at Institut für Weltraumforschung, ÖAW, Austria since 2014Lecturer in Astrophysics, University of Graz, Austria Publications Refereed Articles:213(First Author: 42, Monograph: 2) Citations in SCI:3450(Hirsch Index: 33) Research Interests  Planetary aeronomy  Formation of exospheres and escape processes  Evolution of atmospheres and habitability  Exoplanet environment characterization Editorial Boards since 2001Editor, Astrobiology (Mary Ann Libert Publ.) since 2002Member Editorial Board, Int. Journal of Astrobiology 2007-2009Associate Editor, Journal of Geophysical Research 10IWF/ÖAW


Download ppt "Main task  Upper atmospheres (and magnetospheres) in the context of solar/stellar wind plasma and radiation interaction Main research topics 1.Upper atmosphere."

Similar presentations


Ads by Google