Presentation is loading. Please wait.

Presentation is loading. Please wait.

Visualizing Partial Derivatives without Graphs. Martin Flashman. Humboldt State University and Occidental College.

Similar presentations


Presentation on theme: "Visualizing Partial Derivatives without Graphs. Martin Flashman. Humboldt State University and Occidental College."— Presentation transcript:

1 Visualizing Partial Derivatives without Graphs. Martin Flashman. Humboldt State University and Occidental College. flashman@humboldt.edu

2 Abstract ► In this presentation the author will  explain and use free graphing technology ( Winplot ) to illustrate  how to visualize the partial derivative without graphs. ► The treatment is suitable for any introductory treatment of the concept. ► Based on mapping (transformation) figures this approach  allows students to understand the concepts in an n-dimensional context  without any change in presentation from that given for the ordinary derivative.

3 Foundations Mapping (Transformation) Figures ► Visualize functions f : R  R y = f(x) ► Winplot examples:  linear  nonlinear

4 y = 2x -1 y = x 2

5 Dynamic interpretation ► Dynamic interpretation of the derivative visualized using   y/  x  rates ► Illustrate using Winplot

6 Visualizing Multi-Variable Functions ► Visualize functions f : R n  R y = f(x 1,x 2,…,x n ) ► Visualize f : R 2  R y = f(x 1,x 2 )

7 y = 2(x 1 -1) – 3(x 2 -1) y = x 1 2 - x 2 3

8 Visualizing The Partial Derivative for y = f(x 1,x 2 ) ► Dynamic interpretation of the partial derivatives for f : R 2  R y = f(x 1,x 2 ) visualized using  y/  x 1 and  y/  x 2. ► Static picture next slide. ► Winplot dynamic visualization.

9 y = 2(x 1 -1) – 3(x 2 -1) y = x 1 2 - x 2 3

10 Visualizing The Partial Derivative for y = f(x 1,x 2,…,x n ) ► Dynamic interpretation of the partial derivative for f : R n  R y = f(x 1,x 2,…,x n ) visualized using  y/  x 1, …,  y/  x n. ► Static picture here. ► Winplot dynamic visualization.

11 Conclusion ► Can use this visualization for other aspects of functions ► f : R n  R k f (x 1,x 2,…,x n )=(y 1,y 2,…,y k ) f (x 1,x 2,…,x n )=(y 1,y 2,…,y k ) where y k = f k (x 1,x 2,…,x n )

12 Time!Time! ► Questions? ► Responses? ► Further Communication by e-mail: flashman@humboldt.edu ► These notes will be available at http://www.humboldt.edu/~mef2

13 Thanks- The end!


Download ppt "Visualizing Partial Derivatives without Graphs. Martin Flashman. Humboldt State University and Occidental College."

Similar presentations


Ads by Google