Download presentation
Presentation is loading. Please wait.
Published byArleen Garrison Modified over 9 years ago
1
Visualizing Partial Derivatives without Graphs. Martin Flashman. Humboldt State University and Occidental College. flashman@humboldt.edu
2
Abstract ► In this presentation the author will explain and use free graphing technology ( Winplot ) to illustrate how to visualize the partial derivative without graphs. ► The treatment is suitable for any introductory treatment of the concept. ► Based on mapping (transformation) figures this approach allows students to understand the concepts in an n-dimensional context without any change in presentation from that given for the ordinary derivative.
3
Foundations Mapping (Transformation) Figures ► Visualize functions f : R R y = f(x) ► Winplot examples: linear nonlinear
4
y = 2x -1 y = x 2
5
Dynamic interpretation ► Dynamic interpretation of the derivative visualized using y/ x rates ► Illustrate using Winplot
6
Visualizing Multi-Variable Functions ► Visualize functions f : R n R y = f(x 1,x 2,…,x n ) ► Visualize f : R 2 R y = f(x 1,x 2 )
7
y = 2(x 1 -1) – 3(x 2 -1) y = x 1 2 - x 2 3
8
Visualizing The Partial Derivative for y = f(x 1,x 2 ) ► Dynamic interpretation of the partial derivatives for f : R 2 R y = f(x 1,x 2 ) visualized using y/ x 1 and y/ x 2. ► Static picture next slide. ► Winplot dynamic visualization.
9
y = 2(x 1 -1) – 3(x 2 -1) y = x 1 2 - x 2 3
10
Visualizing The Partial Derivative for y = f(x 1,x 2,…,x n ) ► Dynamic interpretation of the partial derivative for f : R n R y = f(x 1,x 2,…,x n ) visualized using y/ x 1, …, y/ x n. ► Static picture here. ► Winplot dynamic visualization.
11
Conclusion ► Can use this visualization for other aspects of functions ► f : R n R k f (x 1,x 2,…,x n )=(y 1,y 2,…,y k ) f (x 1,x 2,…,x n )=(y 1,y 2,…,y k ) where y k = f k (x 1,x 2,…,x n )
12
Time!Time! ► Questions? ► Responses? ► Further Communication by e-mail: flashman@humboldt.edu ► These notes will be available at http://www.humboldt.edu/~mef2
13
Thanks- The end!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.