Download presentation
Presentation is loading. Please wait.
Published byAvery Sanchez Modified over 11 years ago
1
MIT 2.71/2.710 Optics 10/25/04 wk8-a-1 The spatial frequency domain
2
MIT 2.71/2.710 Optics 10/25/04 wk8-a-2 Recall: plane wave propagation path delay increases linearly with x plane of observation
3
MIT 2.71/2.710 Optics 10/25/04 wk8-a-3 Spatial frequency angle of propagation? plane of observation electric field
4
MIT 2.71/2.710 Optics 10/25/04 wk8-a-4 Spatial frequency angle of propagation? plane of observation
5
MIT 2.71/2.710 Optics 10/25/04 wk8-a-5 The cross-section of the optical field with the optical axis is a sinusoid of the form Spatial frequency angle of propagation? i.e.it looks like where spatial frequency is called the spatial frequency
6
MIT 2.71/2.710 Optics 10/25/04 wk8-a-6 2D sinusoids
7
MIT 2.71/2.710 Optics 10/25/04 wk8-a-7 2D sinusoids min max
8
MIT 2.71/2.710 Optics 10/25/04 wk8-a-8 2D sinusoids min max
9
MIT 2.71/2.710 Optics 10/25/04 wk8-a-9 2D sinusoids min max
10
MIT 2.71/2.710 Optics 10/25/04 wk8-a-10 Periodic Grating /1: vertical Space domain Frequency (Fourier) domain
11
Periodic Grating /2: tilted Space domain Frequency (Fourier) domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-11
12
Superposition: multiple gratings Space domain Frequency (Fourier) domain MIT 2.71/2.710 Optics 10/25/04 wk8-a-12
13
MIT 2.71/2.710 Optics 10/25/04 wk8-a-13 More superpositions Space domain Frequency (Fourier) domain
14
MIT 2.71/2.710 Optics 10/25/04 wk8-a-14 Size of object vsfrequency content Space domain Frequency (Fourier) domain
15
MIT 2.71/2.710 Optics 10/25/04 wk8-a-15 Superimposing shifted objects Space domain Frequency (Fourier) domain
16
MIT 2.71/2.710 Optics 10/25/04 wk8-a-16 Linear shift invariant systems in the time domain
17
MIT 2.71/2.710 Optics 10/25/04 wk8-a-17 Linear shift invariant systems
18
MIT 2.71/2.710 Optics 10/25/04 wk8-a-18 Linear shift invariant systems impulse excitation shift invariance
19
MIT 2.71/2.710 Optics 10/25/04 wk8-a-19 Linear shift invariant systems impulse excitation linearity
20
MIT 2.71/2.710 Optics 10/25/04 wk8-a-20 Linear shift invariant systems arbitrary sifting property of the δ-functionconvolution integral
21
MIT 2.71/2.710 Optics 10/25/04 wk8-a-21 Linear shift invariant systems sinusoid attenuation phase delay transfer function same frequency
22
MIT 2.71/2.710 Optics 10/25/04 wk8-a-22 From time to frequency: Fourier analysis Can I express an arbitrary g(t) as a superposition of sinusoids?
23
MIT 2.71/2.710 Optics 10/25/04 wk8-a-23 The Fourier integral inverse Fourier transform (aka inverse Fourier transform) superposition sinusoids complex weight, expresses relative amplitude (magnitude & phase) of superposed sinusoids
24
MIT 2.71/2.710 Optics 10/25/04 wk8-a-24 The Fourier transform The complex weight coefficients G(ν), akaFourier transform Fourier transform of g(t) are calculated from the integral
25
MIT 2.71/2.710 Optics 10/25/04 wk8-a-25 Fourier transform pairs
26
MIT 2.71/2.710 Optics 10/25/04 wk8-a-26 2Dpairs 2D Fourier transform pairs Image removed due to copyright concerns (from Goodman, Introduction to Fourier Optics, page 14)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.