Presentation is loading. Please wait.

Presentation is loading. Please wait.

The imaging problem object imaging optics (lenses, etc.) image

Similar presentations


Presentation on theme: "The imaging problem object imaging optics (lenses, etc.) image"— Presentation transcript:

1 The imaging problem object imaging optics (lenses, etc.) image
MIT 2.71/2.710 Optics 10/27/04 wk8-b-1

2 The imaging problem Illumination (coherent vs incoherent) image object
imaging optics (lenses, etc.) free space free space MIT 2.71/2.710 Optics 10/27/04 wk8-b-2

3 (spatial) linear shift-invariant system
The imaging problem Illumination (coherent vs incoherent) image object (spatial) linear shift-invariant system MIT 2.71/2.710 Optics 10/27/04 wk8-b-3

4 (spatial) linear shift-invariant system
The imaging problem image object (spatial) linear shift-invariant system MIT 2.71/2.710 Optics 10/27/04 wk8-b-4

5 Our approach • Today: – linear shift invariant (LSI) systems in the space/spatial frequency domains – mathematical properties of Fourier transforms • Monday: – free space propagation: Fresnel and Fraunhofer diffraction • Wednesday: – examples of Fraunhofer diffraction: amplitude and phase diffraction gratings – wave description of light propagation through a lens – Fourier transformation and imaging using lenses MIT 2.71/2.710 Optics 10/27/04 wk8-b-5

6 Spatial filtering MIT 2.71/2.710 Optics 10/27/04 wk8-b-6

7 Spatial frequency representation (aka spatial frequency domain)
space domain 3 sinusoids Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/27/04 wk8-b-7

8 Spatial frequency removal (aka spatial frequency domain)
space domain 2 sinusoids (1 removed) Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/27/04 wk8-b-8

9 From space to spatial frequency:
2D Fourier analysis Can I express an arbitrary g(x,y) as a superposition of sinusoids? MIT 2.71/2.710 Optics 10/27/04 wk8-b-9 ... etc. ...

10 (aka spatial frequency domain)
Spatial frequency representation Fourier domain (aka spatial frequency domain) space domain g(x,y) MIT 2.71/2.710 Optics 10/27/04 wk8-b-10

11 (aka spatial frequency domain)
Low-pass filtering removed high-frequency content Fourier domain (aka spatial frequency domain) space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-11

12 removed high-and low-frequency content (aka spatial frequency domain)
Band-pass filtering removed high-and low-frequency content Fourier domain (aka spatial frequency domain) space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-12

13 Example: optical lithography
Original nested Ls mild low-pass filtering Notice: (i) blurring at the edges (ii) ringing original pattern (“nested L’s”) MIT 2.71/2.710 Optics 10/27/04 wk8-b-13

14 Example: optical lithography
Original nested Ls severe low-pass filtering Notice: (i) blurring at the edges (ii) ringing original pattern (“nested L’s”) MIT 2.71/2.710 Optics 10/27/04 wk8-b-14

15 The 2D Fourier integral (aka inverse Fourier transform) superposition
sinusoids complex weight, expresses relative amplitude (magnitude & phase) of superposed sinusoids MIT 2.71/2.710 Optics 10/27/04 wk8-b-15

16 The 2D Fourier integral The complex weight coefficients G(u,v),
Aka Fourier transform of g(x,y) are calculated from the integral (1D so we can draw it easily ... ) MIT 2.71/2.710 Optics 10/27/04 wk8-b-16

17 2D Fourier transform pairs
Image removed due to copyright concerns (from Goodman, Introduction to Fourier Optics, page 14) MIT 2.71/2.710 Optics 10/27/04 wk8-b-17

18 Space and spatial frequency representations SPATIAL FREQUENCY DOMAIN
SPACE DOMAIN 2D Fourier transform 2D Fourier integral aka inverse 2D Fourier transform SPATIAL FREQUENCY DOMAIN MIT 2.71/2.710 Optics 10/27/04 wk8-b-18

19 Fourier transform properties /1
•Fourier transforms and the delta function •Linearity of Fourier transforms if and then for any pair of complex numbers MIT 2.71/2.710 Optics 10/27/04 wk8-b-19

20 Fourier transform properties /2
Let Shift theorem (space →frequency) Shift theorem (frequency →space) Scaling theorem MIT 2.71/2.710 Optics 10/27/04 wk8-b-20

21 Fourier transform properties /3
Let and Let Convolution theorem (space →frequency) Let Convolution theorem (frequency →space) MIT 2.71/2.710 Optics 10/27/04 wk8-b-21

22 Fourier transform properties /4
Let and Let Correlation theorem (space →frequency) Let Correlation theorem (frequency →space) MIT 2.71/2.710 Optics 10/27/04 wk8-b-22

23 2D linear shift invariant systems
input output convolution with impulse response Fourier transform transform Inverse Fourier multiplication with transfer function MIT 2.71/2.710 Optics 10/27/04 wk8-b-23

24 2D linear shift invariant systems
SPACE DOMAIN input output convolution with impulse response Fourier transform transform Inverse Fourier multiplication with transfer function SPATIAL FREQUENCY DOMAIN MIT 2.71/2.710 Optics 10/27/04 wk8-b-24

25 2D linear shift invariant systems
input output convolution with impulse response Fourier transform transform Inverse Fourier are pair multiplication with transfer function MIT 2.71/2.710 Optics 10/27/04 wk8-b-25

26 Sampling space and frequency
pixel size frequency resolution space domain spatial frequency domain field size Nyquist relationships: MIT 2.71/2.710 Optics 10/27/04 wk8-b-26

27 The Space–Bandwidth Product Nyquist relationships:
from space → spatial frequency domain: from spatial frequency → space domain: : 1D Space–Bandwidth Product (SBP) aka number of pixels in the space domain MIT 2.71/2.710 Optics 10/27/04 wk8-b-27

28 (aka spatial frequency domain)
SBP: example space domain Fourier domain (aka spatial frequency domain) MIT 2.71/2.710 Optics 10/27/04 wk8-b-28


Download ppt "The imaging problem object imaging optics (lenses, etc.) image"

Similar presentations


Ads by Google