Download presentation
Presentation is loading. Please wait.
Published byAva Todd Modified over 10 years ago
1
Today’s summary • A new look at propagation and phase delays
• Description of plane & spherical waves in terms of phase delay • Interference • Interferometers –Michelson –Mach-Zehnder –Young MIT 2.71/2.710 Optics 10/18/04 wk7-a-1
2
Optical path delay MIT 2.71/2.710 Optics 10/18/04 wk7-a-2
3
Optical path delay MIT 2.71/2.710 Optics 10/18/04 wk7-a-3
4
Optical path delay MIT 2.71/2.710 Optics 10/18/04 wk7-a-4
5
Optical path delay MIT 2.71/2.710 Optics 10/18/04 wk7-a-5
6
phasor due to propagation (path delay)
Optical path delay phasor due to propagation (path delay) In general, MIT 2.71/2.710 Optics 10/18/04 wk7-a-6
7
Plane wave propagation
path delay increases linearly with x plane of observation MIT 2.71/2.710 Optics 10/18/04 wk7-a-7
8
Plane wave propagation
path delay increases linearly with x plane of observation MIT 2.71/2.710 Optics 10/18/04 wk7-a-8
9
Plane wave propagation
path delay at fixed slope where MIT 2.71/2.710 Optics 10/18/04 wk7-a-9
10
Spherical wave propagation
path delay increases with x as for plane of observation MIT 2.71/2.710 Optics 10/18/04 wk7-a-10
11
Spherical wave propagation
path delay increases with x as quadratic near the axis plane of observation MIT 2.71/2.710 Optics 10/18/04 wk7-a-11
12
Spherical wave propagation
plane of observation MIT 2.71/2.710 Optics 10/18/04 wk7-a-12
13
Spherical wave propagation
path delay at fixed where MIT 2.71/2.710 Optics 10/18/04 wk7-a-13
14
Optical path delays matter
path delay in material of index n: compare with free space propagation : MIT 2.71/2.710 Optics 10/18/04 wk7-a-14
15
Optical path delays matter
difference: MIT 2.71/2.710 Optics 10/18/04 wk7-a-15
16
Can we measure them and how?
Phase delays matter Can we measure them and how? • Direct measurement does not work: light waves oscillate too fast for any instrument to follow • We need an indirect method • Solution: interferometers “map” phase onto light intensity which can be measured directly MIT 2.71/2.710 Optics 10/18/04 wk7-a-16
17
Interference MIT 2.71/2.710 Optics 10/18/04 wk7-a-17
18
Wave interference observation screen
MIT 2.71/2.710 Optics 10/18/04 wk7-a-18
19
Interference: extreme cases
Waves in-phase Constructive interference Waves out-of-phase Destructive interference MIT 2.71/2.710 Optics 10/18/04 wk7-a-19
20
Interference vs phase delay & contrast
Intensity fringe visibility aka contrast average intensity Field 1 Field 2 relative phase delay MIT 2.71/2.710 Optics 10/18/04 wk7-a-20
21
Interference vs phase delay & contrast
Intensity Intensity perfect contrast imperfect contrast Intensity Highest contrast / fringe visibility is obtained by interfering beams of equal amplitudes no interference MIT 2.71/2.710 Optics 10/18/04 wk7-a-21
22
Polarization and interference
polarized waves interfere polarized waves do not interfere MIT 2.71/2.710 Optics 10/18/04 wk7-a-22
23
Michelson interferometer
incoming laser beam path difference: MIT 2.71/2.710 Optics 10/18/04 wk7-a-23
24
Michelson with variable phase-delay
Gas cell incoming laser beam MIT 2.71/2.710 Optics 10/18/04 wk7-a-24
25
Mach-Zehnder interferometer
bright fringe (matched paths) incoming laser beam interference pattern incoming laser beam spatial period MIT 2.71/2.710 Optics 10/18/04 wk7-a-25
26
Young interferometer incoming laser beam opaque screen
MIT 2.71/2.710 Optics 10/18/04 wk7-a-26
27
Young interferometer incoming plane wave opaque screen
MIT 2.71/2.710 Optics 10/18/04 wk7-a-27
28
Two point sources interfering: math…
Paraxial analysis: Amplitude: intensity MIT 2.71/2.710 Optics 10/18/04 wk7-a-28
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.