Presentation is loading. Please wait.

Presentation is loading. Please wait.

Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague.

Similar presentations


Presentation on theme: "Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague."— Presentation transcript:

1 Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague

2 Mott with spin current Dirac with current through magnet Mott without spin current  ‪ Spintronics ‬ From Wikipedia, the free encyclopedia Spintronics (a pormanteau meaning spin transport electronics).... Dirac without current through magnet II II MRAM 2006 GMR 1988 AMR 1857 HD Read-heads 1990‘s

3 STT-MRAM Berger PRB ’96, Slonczewski JMMM ’96 MpMp M IeIe Writing by current: non-relativistic spin-transfer torque Spins injected from external polarizer in a non-uniform magnetic structure

4 II Mott MpMp M IeIe Berger PRB ’96, Slonczewski JMMM ’96 Writing by current: non-relativistic spin-transfer torque

5 M IeIe Miron et al., Nature ‘11 Spin current in a uniform magnetic structure with broken space-inversion symmetry In-plane current switching Zinc-blende (Ga,Mn)As: broken bulk inversion symmetry Co/Pt: broken structural inversion symmetry Writing by current: relativistic spin-orbit torque Manchon & Zhang, PRB ‘08, Chernyshev et al. Nature Phys.‘09, Miron et al. Nature Mater. ‘10, Fang, Ferguson, TJ et al. Nature Nanotech.‘11

6 Manchon & Zhang, PRB ‘08, Chernyshev et al. Nature Phys.‘09, Miron et al. Nature Mater. ‘10, Fang, Ferguson, TJ et al. Nature Nanotech.‘11 I I Dirac M IeIe Writing by current: relativistic spin-orbit torque Spin current in a uniform magnetic structure with broken space-inversion symmetry Zinc-blende (Ga,Mn)As: broken bulk inversion symmetry

7 Materials

8 Disordered M=0: bad for direct manipulation by magnetic field, no magnetic memory compatible with semiconductors: transitsors & photonics Paramagnets: very frequent Magnetic field of moving nucleus in electron‘s rest frame Spin-orbit Kato et al., Science ’04, Wunderlich, TJ et al. Phys. Rev. Lett. ’05 Spin Hall effect

9 Disordered M=0: bad for direct manipulation by magnetic field, no magnetic memory compatible with semiconductors: transitsors & photonics Paramagnets: very frequent Magnetic field of moving nucleus in electron‘s rest frame Spin-orbit Spin Hall effect

10 Ordered M  0: good for direct manipulation by magnetic field, bad for retention with magnetic field around not well compatible with semiconductors Ferromagnets: rare Disordered M=0: bad for directmanipulation by magnetic field, no magnetic memory compatible with semiconductors: transitsors & photonics Paramagnets: very frequent Magnetic field of moving nucleus in electron‘s rest frame Spin-orbit Antiferromagnets: frequent Ordered M=0: bad for direct manipulation by magnetic field, good for retention with magnetic field around compatible with semiconductors: transitsors & photonics E gap E exchange E Fermi

11 Magnetic-field control of FMs: scales with current Control by current via spin torques: scales with current density 0.1 pJ Electro-static field control via relativistic magnetic anisotropy effects: 1fJ (or piezo-electric) Should work equally well or better in AFMs: more choices including SCs Control by photo-carriers via spin torques: sub ps timescales Relativistic spin-orbit torques might work equally well in AFMs plus photocarriers in SCs Laser

12 I I I I Mott with ferromagnets Dirac with ferromagnets Dirac with antiferromagnets II II Mott with antiferromagnets 

13 FMAFM Shick, Wunderlich, TJ, et al., PRB‘10 Spintronics with antiferromagnets AFM IrMn II Dirac

14 Ta/Ru/Ta MnIr MgO Pt NiFe Spin-valve with AFM electrode Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12

15 Ta/Ru/Ta MnIr MgO Pt NiFe Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode

16 Ta/Ru/Ta NiFe MnIr MgO Pt Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode

17 Ta/Ru/Ta NiFe MnIr MgO Pt >100% spin-valve-like signal at ~50 mT 50 100 R [k  ] 01 B [ T ] 1.5 & 3nm IrMn 4K Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode

18 Ta/Ru/Ta NiFe MnIr MgO Pt Electrically measurable memory effect in AFM Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode

19 Ta/Ru/Ta NiFe MnIr MgO Pt Small signal in control sample without IrMn Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode

20 Wang et al. PRL ’12: room-T AFM TAMR in CoPt/IrMn/AlO x /Pt Writing by magnetic field via FM/AFM exchange-spring B  [ o ] 50 100 R [k  ] 01 B [ T ] II ~100% AFM-TAMRAFM memory effect Park, Marti, Wunderlich,TJ et al. Nature Mat. ’11, PRL ’12 Spin-valve with AFM electrode

21 Ta/Ru/Ta MnIr MgO Pt NiFe Petti, Marti, Bertacco, TJ et al., submitted to APL ‘13 AFM tunnel junction written by field-cool without FM

22 Ta/Ru/Ta NiFe MnIr MgO Pt Petti, Marti, Bertacco, TJ et al., submitted to APL ‘13 AFM tunnel junction written by field-cool without FM

23 Ta/Ru/Ta MnIr Pt Compare: thermal-assisted MRAM MgO Petti, Marti, Bertacco, TJ et al., submitted to APL ‘13 AFM tunnel junction written by field-cool without FM

24 Principle: increase susceptibility  write by field  back to negligible susceptibility AFM II Magnetic memory insensitive to magnetic fields & producing no stray fields (R H -R L )/R L (%) Ta/Ru/Ta MnIr MgO Pt B z y x Petti, Marti, Bertacco, TJ et al., APL ‘13 AFM tunnel junction written by field-cool without FM

25

26 M Spintronics & transistors Spintronics & photonics Control by electro-static fields or photo-carriers: magnetic semiconductors Ohno, Dietl et al., Science ’98,’00, TJ et al., Rev. Mod. Phys. ‘06 T c < room-T

27 II-VIFM T C (K)AFM T N (K) MnO122 MnS152 MnSe173 MnTe323 EuO67 EuS16 EuSe5 EuTe10 II-V-IV-VFM T C (K)AFM T N (K) MnSiN 2 490 III-VFM T C (K)AFM T N (K) FeN100 FeP115 FeAs77 FeSb100-220 GdN72 GdP15 GdAs19 GdSb27 I-VI-III-VIFM T C (K)AFM T N (K) CuFeO 2 11 CuFeS 2 825 CuFeSe 2 70 CuFeTe 2 254 I-II-VFM T C (K)AFM T N (K) Ia=Li, Na,.. Ib=Cu II=Mn V=Sb,As, P > room T Magnetic semiconductors: more AFMs than FMs and high-T N AFMs TJ, Novák, Martí et al. PRB ’11, Cava Viewpoint, Physics ’11, Máca, Mašek, TJ et al. JMMM ’12

28 Spin-orbit-coupled Mott AFM semiconductor Kim et al., Science ’09, two focused sessions at APS MM 2013 II

29 Ohmic AMR in Sr 2 IrO 4 AFM semiconductor II B Writing by magnetic field via FM/AFM exchange-spring Martí, TJ, Fontcuberta, Ramesh, et al. preprint

30 LSMO SIO Ag Pt LSMO SIO Ag T = 200 K T = 40 K T = 4.2 K Ohmic AMR in Sr 2 IrO 4 AFM semiconductor Martí, TJ, Fontcuberta, Ramesh, et al. preprint


Download ppt "Spintronics: How spin can act on charge carriers and vice versa Tomas Jungwirth University of Nottingham Institute of Physics Prague."

Similar presentations


Ads by Google