Presentation is loading. Please wait.

Presentation is loading. Please wait.

15.082 and 6.855J Dijkstras Algorithm with simple buckets (also known as Dials algorithm)

Similar presentations


Presentation on theme: "15.082 and 6.855J Dijkstras Algorithm with simple buckets (also known as Dials algorithm)"— Presentation transcript:

1 15.082 and 6.855J Dijkstras Algorithm with simple buckets (also known as Dials algorithm)

2 2 An Example 1 2 3 4 5 6 2 4 2 1 3 4 2 3 2 Initialize distance labels 1 0 Select the node with the minimum temporary distance label. 01234567 1 2 3 4 5 6 Initialize buckets.

3 3 Update Step 2 3 4 5 6 2 4 2 1 3 4 2 3 2 2 4 0 1 01234567 1 2 3 4 5 6 23

4 4 Choose Minimum Temporary Label 1 3 4 5 6 2 4 2 1 3 4 2 3 2 2 4 0 2 01234567 4 5 6 23 Find Min by starting at the leftmost bucket and scanning right till there is a non-empty bucket.

5 5 Update Step 1 2 3 4 5 6 2 4 2 1 3 4 2 3 2 2 4 6 4 3 0 01234567 4 5 6 23 3 4 5

6 6 Choose Minimum Temporary Label 1 24 5 6 2 4 2 1 3 4 2 3 2 2 3 6 4 0 3 01234567 6 3 45 Find Min by starting at the leftmost bucket and scanning right till there is a non-empty bucket.

7 7 Update 1 24 5 6 2 4 2 1 3 4 2 3 2 0 3 2 3 6 4 01234567 6 3 45

8 8 Choose Minimum Temporary Label 1 24 6 2 4 2 1 3 4 2 3 2 0 3 2 3 6 4 5 01234567 6 45

9 9 Update 1 24 6 2 4 2 1 3 4 2 3 2 0 3 2 3 6 4 5 6 01234567 6 45 6

10 10 Choose Minimum Temporary Label 1 2 6 2 4 2 1 3 4 2 3 2 0 3 2 3 6 4 5 6 4 01234567 4 6

11 11 Update 1 2 6 2 4 2 1 3 4 2 3 2 0 3 2 3 6 4 5 6 4 01234567 4 6

12 12 Choose Minimum Temporary Label 1 2 2 4 2 1 3 4 2 3 2 0 3 2 3 6 4 5 6 4 6 01234567 6 There is nothing to update

13 13 End of Algorithm 1 2 2 4 2 1 3 4 2 3 2 0 3 2 3 6 4 5 6 4 6 All nodes are now permanent The predecessors form a tree The shortest path from node 1 to node 6 can be found by tracing back predecessors


Download ppt "15.082 and 6.855J Dijkstras Algorithm with simple buckets (also known as Dials algorithm)"

Similar presentations


Ads by Google