Download presentation
Presentation is loading. Please wait.
Published byGodfrey York Modified over 9 years ago
1
100 200 300 400 500 Inscribed Angles Tangents & Angles Secants, Tangents, & Angles Segments In Circles Equations Of Circles
2
Inscribed Angles - 100 Answer: 90° AB is a diameter. Find m<BCA. A C B 35°
3
Inscribed Angles - 200 Answer: 50° Find m<CBD. C A B D 50°
4
Inscribed Angles - 300 P A D C B If the measure of arc AC = 72°, find m<ABC. Answer: 72/2 = 36° 72° 36°
5
Inscribed Angles - 400 Find the measure of arc BD. P A D C B 55° Answer: m<BCD = 35°, so arc BD = 70° 70° 35° 90°
6
Inscribed Angles - 500 Find the measure of arc ABD. P A D C B 36° 55° Answer: mAC = 72° and mCD = 110°, So mABD = 360 – (110 + 72) = 178° 72° 110° 70° 108°
7
Tangents and Angles - 100 Answer: 5 2 + x 2 = 13 2, so x = 12 = BA Find BA. A B P 5 8 5
8
Tangents and Angles - 200 Answer: 4x + 18 = 7x, so x = 6 Find x. A B.P.P C 4x + 18 7x
9
Tangents and Angles - 300 Answer: m<BPA = 48°, so mBC = 48° Find the measure of arc BC. D A B P C 42° 48°
10
Tangents and Angles - 400 Answer: 100° Find the measure of arc UV. R S T U V W X Y Z 40° 50° 40°
11
Tangents and Angles - 500 Answer: For UW: 3 2 + x 2 = 5 2, UW = 4 For XW: 6 2 + x 2 = 10 2, WX = 8, so UT = 4 + 8 = 12 Find UT. R S T U V W X Y Z 2 3 4 6 3 3 4 4 8 8 6 6
12
Secants, Tangents, Angles - 100 Answer: m<EBC = 240/2 = 120° Find m<EBC.. D A C E B 240° 120°
13
Secants, Tangents, Angles - 200 Answer: m<3 = (60 + 160)/2 = 110° Find m<3. 60° D C A B 1 4 2 3 C 160° 60° 80°
14
Secants, Tangents, Angles - 300 Answer: m<WXY = (105 – 55)/2 = 25° Find m<WXY. W X Y Z 105° 55° 200°
15
Secants, Tangents, Angles - 400 Answer: m<LJK = (40 + 170)/2 = 105º Find m<LJK 150º H I L K J N M 40º 110º 20º 40º
16
Secants, Tangents, Angles - 500 Answer: 4x + 6x + 11x - 5 + 20x + 10 + 150 = 360, so x = 5. Then mKN = 110 º and mIM = 20º, so m<H = (110 - 20)/2 = 45 º Find m<H H I L K J N M (11x - 5)º (20x + 10)º (4x)º (6x)º 150º 110º 20º
17
Segments in Circles - 100 Answer: 6·3 = 9x, x = 2 Find x. D C A B C 6 3 9 x
18
Segments in Circles - 200 Answer: 62 = 4(4 + x), x = 5 Find x. R S T U 6 x 4
19
Segments in Circles - 300 Answer: 4(4 + x) = 3(8), x = 2 P Find x. O N M L 5 3 4 x
20
Segments in Circles - 400 Answer: x·x = 16 ·4, x = 8 Find x. C A B C 4 16 x D
21
Segments in Circles - 500 Answer: x(x + x) = 5(19.6), 2x 2 = 98, so x = 7 Find x. H G F E 14.6 5 x x I
22
Equations of Circles - 100 Answer: (4, -5) What are the coordinates of the center of a circle with equation (x – 4) 2 + (y + 5) 2 = 16
23
Equations of Circles - 200 Answer: √34 = 5.8 What is the radius of a circle, as a decimal to the nearest tenth, with equation: (x – 4) 2 + (y + 5) 2 = 34.
24
Equations of Circles - 300 Answer: (x + 1) 2 + (y + 2) 2 = 9 Write the equation for circle K. K
25
Equations of Circles - 400 Answer: (x – 1) 2 + y 2 = 25 Find the equation of circle P. P
26
Equations of Circles - 500 Answer: The center of the circle is (1, 0) and the radius is 2. The easiest way to find the coordinates of a point on the circle would be to move 2 units above (1, 2), below (1, -2), left (-1, 0), or right (3, 0) of the center. Name the coordinates of a point on the circle with equation (x – 1) 2 + y 2 = 4
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.