Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dark Energy News on CMB and Structure Formation. Dark Energy Evidence.

Similar presentations


Presentation on theme: "Dark Energy News on CMB and Structure Formation. Dark Energy Evidence."— Presentation transcript:

1 Dark Energy News on CMB and Structure Formation

2 Dark Energy Evidence

3 WMAP+ACBAR+CBI+2dF+L  Spergel et al. 2003

4 Cosmological Constant Problem

5 G+g=8T+VgG+g=8T+VgG+g=8T+VgG+g=8T+Vg Geometry Quantum Vacuum

6 Cosmological Constant Problem |  -V|/M 2 Planck. 10 -123 :::: V:

7 Cosmological Constant Problem |  -V|/M 2 Planck =10 -123 :::: V: percentaccuracy

8 for Physics for Physics Why so small with respect to any particle physics scale Why comparable to the cosmological critical density today Two Two

9 Dark Energy Models Trans-Planckian: energy stored in perturbations with wavenumber beyond the Planck scale (Mersini et al. 2001)Trans-Planckian: energy stored in perturbations with wavenumber beyond the Planck scale (Mersini et al. 2001) Spacetime microstructure: self-adjusting spacetime capable to absorbe vacuum energy (Padmanabhan, 2002)Spacetime microstructure: self-adjusting spacetime capable to absorbe vacuum energy (Padmanabhan, 2002) Matter-Energy Transition: dark matter undergoes a phase transition to dark energy at low redshifts (Basset et al. 2003)Matter-Energy Transition: dark matter undergoes a phase transition to dark energy at low redshifts (Basset et al. 2003) Brane worlds: brane tension (Shani & Sthanov 2002); cyclic-ekpyrotic cosmic vacuum (Steinhardt &Tutok 2001)Brane worlds: brane tension (Shani & Sthanov 2002); cyclic-ekpyrotic cosmic vacuum (Steinhardt &Tutok 2001) Exotic particle physics: photons oscillating in something else at cosmological distances (Csaki et al. 2002)Exotic particle physics: photons oscillating in something else at cosmological distances (Csaki et al. 2002) Chaplygin gas: dark matter and energy described by a single gas having variable equation of state (Den et al. 2003, Carturan & Finelli 2003)Chaplygin gas: dark matter and energy described by a single gas having variable equation of state (Den et al. 2003, Carturan & Finelli 2003) Scale-dependent Gravity: Gravity weaker on large scales (Dvali et al. 2003)Scale-dependent Gravity: Gravity weaker on large scales (Dvali et al. 2003) Quintessence: tracking scalar fields (Ratra & Peebles, Wetterich 1988, Coble et al. 1997, Ferreira & Joyce 1998, Liddle & Scherrer 1999, Steinhardt et al. 1999, Perrotta & Baccigalupi 1999, Brax & Martin 2000, Masiero et al. 2001, Doran et al. 2001, Corasaniti & Copeland 2003, ) Extended Quintessence: non-minimal coupling to Gravity (Chiba, Uzan 1999, Perrotta et al. 2000, Baccigalupi et al. 2000, Faraoni 2000, Bartolo & Pietroni 2000, Esposito-Farese & Polarski 2001, Perrotta & Baccigalupi 2002) Coupled Quintessence: coupling with dark matter (Carroll 1998, Amendola 2000, Matarrese et al. 2003) k-essence: modified kinetic scalar field energy (Aramendariz-Picon et al. 2001, Caldwell 2002, Malquarti et al. 2003)

10 Quintessence Field  !  (t)+   (t,x), U(  )

11  vs.  Background energy density: dynamical,  t 2 /2+U(  ) Background pressure: dynamical,  t 2 /2-U(  ) Fluctuations,  (t,x) Background energy density:  =constant Background energy density: p=-constant No fluctuations Constant equation of state, w=p/  Dynamical equation of state, w=p/ 

12 Quintessence Field  !  (t)+   (t,x), U(  ) U(  ) /   (Ratra & Peebles 1988) U(  ) / cos   (Coble et al. 1997) U(  ) / exp   (Wetterich 1988) … U(  ) /   exp(  2 )(Brax & Martin 2000)

13 w today WMAP+ACBAR+CBI+2dF+Ly  Spergel et al. 2003 w < -0.8 (2  )

14 Effects on the CMB Power Spectrum Projection Projection Integrated Sachs-Wolfe Integrated Sachs-Wolfe

15 Dark Energy & CMB power spectrum Balbi et al. 2001, Baccigalupi et al. 2002:evidence for w ' –0.8, h fixed and  =1 Balbi et al. 2001, Baccigalupi et al. 2002:evidence for w ' –0.8, h fixed and  =1 Efstathiou 2002: tensor degeneracy for cosmological parameters Efstathiou 2002: tensor degeneracy for cosmological parameters Bean & Melchiorri 2002: degeneracy with hBean & Melchiorri 2002: degeneracy with h Balbi et al. 2003: degeneracy with Balbi et al. 2003: degeneracy with 

16 A CMBfast plug-in for scalar field dark energy DE fast Features: Quintessence evolution in ordinary and scalar-tensor cosmology SUGRA and RP tracking trajectories Scalar field fluctuations User specifies  Q, w 0, and the scenario to obtain the right trajectory

17 Dark Energy & CMB power spectrum

18 Dark Energy & CMB: beyond C l s Giovi et al. 2003, PRD in press, astro-ph/0308118

19 CMB bispectrum B l m l` m` l`` m`` =a lm a l`m` a l``m`` a lm = s  (  )Y lm (  )d  B l l`l`` =  m m` m`` ( m l m` l` m`` l`` ) a lm a l`m` a l``m`` l l` l``  (  ) ´  T(  )/T

20 CMB bispectrum & Structure Formation =0 =0  0  0

21 CMB bispectrum & Structure Formation =[(2l+1)(2l`+1)(2l``+1)/16  ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ =[(2l+1)(2l`+1)(2l``+1)/16  ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ ¢ [l(l+1)- l`(l`+1)+ l``(l``+1) ] C l Q(l``) +Perm. Q(l)= s 0 dec D(z) F(z) dz D(z)=[r(z dec )-r(z)]/r(z dec )r(z) 3 F(z)=dP  /dz| k=l/r(z) P  =(3  m0 /2) 2 (H 0 /ck) 4 P(k,z)(1+z) 2 P(k,z)=Ak n T(k,z) 2  (  ) =  lss (  +  )+  ISW '  lss (  )+ r  lss (  ) ¢   ISW (  )=2 s 0 dec dr d  (r,  )/d   =2 s 0 dec dr[(r-r dec )/r dec r]  r,  ) Hu & White 1997, Bartelmann & Schneider 2001, Komatsu & Spergel 2001, Verde & Spergel 2002

22 CMB bispectrum & Structure Formation l -1 =2  /k=r(z 3 )/l =2  /k=r(z 3 )/l =r(z 2 )/l =r(z 2 )/l =r(z 1 )/l =r(z 1 )/l r(z 1 ) r(z 2 ) r(z 3 ) z1z1z1z1 z2z2z2z2 z3z3z3z3 z r

23 CMB bispectrum line of sight chronology l -1 horizon crossing,  decaying linearly, dQ/dz>0 z !1 :super-horizon scales in a flat CDM universe, dP  /d  =0, dQ/dz ! 0 z r Non-linearity,  grows, dQ/dz<0 z ! 0, vanishes, dQ/dz ! 0 onset of acceleration, change in cosmic equation of state,  decaying linearly, dQ/dz>0

24 CMB bispectrum line of sight distribution Giovi et al. 2003, PRD in press, astro-ph/0308118

25 CMB bispectrum & Dark Energy Quintessence reference models SUGRA RP

26 CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118 Ma et al. 1999, Smith et al. 2003

27 CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118

28 CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118

29 CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118

30 CMB bispectrum & Structure Formation =0 =0  0  0 Giovi, Liguori et al. 2004, in preparation  =2 s 0 dec dr[(r-r dec )/r dec r]  r,  )

31 N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted, see also Klypin et al. 2003, Linder & Jenkins 2003

32 N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted GADGET (Springel et al. 2001) initial box: 512 3 particles, side = 479h -1 M ,  8 today fixed to 0.9 Dark energy in background expansion, linear growth rate Haloes fitted with NFW

33 N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted Quintessence reference models

34 N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted  tt +2H  t –4  G   =0, D + (z)=  (z)/  0

35 N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted c(M,z)=c 0 /(1+z)(M/10 14 h  M  ) 

36 N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted c(M,z)=[c 0 /(1+z)](M/10 14 h  M  )  is c 0 dependent on the dark energy dynamics? can such dependence be predicted? c 0 ! c 0  CDM ¢ D + (z coll ) / D +  CDM (z coll )

37 Dark Energy in Generalized Cosmologies L=f( ,R)/2-[  (  )/2]  ;   ;  -U(  )- -  k [  ;  ;  +V(  k )+W( ,  k )] -  k [  ;  ;  +V(  k )+W( ,  k )]

38 Dark Energy in Generalized Cosmologies L=f( ,R)/2-[  (  )/2]  ;   ;  -U(  )- -  k [  ;  ;  +V(  k )+W( ,  k )] -  k [  ;  ;  +V(  k )+W( ,  k )] Quintessence

39 Dark Energy in Generalized Cosmologies L=f( ,R)/2-[  (  )/2]  ;   ;  -U(  )- -  k [  ;  ;  +V(  k )+W( ,  k )] -  k [  ;  ;  +V(  k )+W( ,  k )] Extended Quintessence

40 Dark Energy in Generalized Cosmologies L=f( ,R)/2-[  (  )/2]  ;   ;  -U(  )- -  k [  ;  ;  +V(  k )+W( ,  k )] -  k [  ;  ;  +V(  k )+W( ,  k )] Coupled Quintessence

41 Dark Energy in Generalized Cosmologies L=f( ,R)/2-[  (  )/2]  ;   ;  -U(  )- -  k [  ;  ;  +V(  k )+W( ,  k )] -  k [  ;  ;  +V(  k )+W( ,  k )] k-essence

42 Dark Energy in Generalized Cosmologies L=f( ,R)/2-[  (  )/2]  ;   ;  -U(  )- -  k [  ;  ;  +V(  k )+W( ,  k )] -  k [  ;  ;  +V(  k )+W( ,  k )] New Gravity

43 Bravely facing the Coincidence What happens at that epoch? Cosmic acceleration is a recent occurrence, say z of order unity … funny physics: the formation of cosmological clumps affects the cosmological vacuum state matter over-densities move the dark energy field out of the potential minimum

44 Extended Quintessence & New Gravity H 2 = (8  G/3)[  + stuff ] stuff = (1/8  GF)[  (1-8  G F) +  t 2 /2+(RF-f)/2+V-3HF t ] H t = - 4  G[  + p + stuff ] stuff = (1/8  GF)[(  p)(1-8  G F) +  t 2 +F tt -HF t ] non-minimal coupling: f=F ¢ R new gravity: f(R)  R/8  G Hwang 1991, generalized cosmologies F=  f /  R

45 Extended Quintessence  k 2 =4  k 3 (  /  ) k 2 Perrotta, Baccigalupi, Matarrese, PRD 2000, Baccigalupi, Matarrese, Perrotta, PRD 2000   m  m  m  m c 2 eff,   1  G= T G= T G= T G= T Perrotta, Baccigalupi 2002  G= T  G= T  G= T  G= T Perrotta et al. 2003, PRD submitted

46 Non-linear Clustering in Extended Quintessence  G= T  G= T  G= T  G= T ds 2 =a 2 [(-1+2  )d  2 +(1-2  )  ij dx i dx j ] r 2  = (1/2F)[a 2  m +a 2  U+ r 2 (  F)+| r (  | 2 /2] r 2  =(1/2F)[a 2  m -2a 2  U- r 2 (  F)] r 2 (  ) =a 2  U-(dF/d  /2F)[a 2  m +4a 2  U+3 r 2 (  F)+| r (  | 2 /2]-a 2  (dF/d  )R Perrotta et al. 2003, PRD submitted

47 Non-linear Clustering in Extended Quintessence  G= T  G= T  G= T  G= T ds 2 =a 2 [(-1+2  )d  2 +(1-2  )  ij dx i dx j ] r 2  = (1/2F)[a 2  m +a 2  U+ r 2 (  F)+| r (  | 2 /2] r 2  =(1/2F)[a 2  m -2a 2  U- r 2 (  F)] r 2 (  ) =a 2  U-(dF/d  /2F)[a 2  m +4a 2  U+3 r 2 (  F)+| r (  | 2 /2]-a 2  (dF/d  )R Perrotta et al. PRD 2004

48 Continua… CMB & bispectrum,*observability*, vary cosmological parameters, non-linearity, … CMB & bispectrum,*observability*, vary cosmological parameters, non-linearity, … N-body, gain statistics, check concentration dependence on w(z), *lensing*… N-body, gain statistics, check concentration dependence on w(z), *lensing*… Generalized cosmologies, are *dark haloes* affected? If so, check with N-body, …Generalized cosmologies, are *dark haloes* affected? If so, check with N-body, …

49 Dark Energy


Download ppt "Dark Energy News on CMB and Structure Formation. Dark Energy Evidence."

Similar presentations


Ads by Google