Download presentation
Presentation is loading. Please wait.
Published byAvice Gibbs Modified over 9 years ago
1
Dark Energy News on CMB and Structure Formation
2
Dark Energy Evidence
3
WMAP+ACBAR+CBI+2dF+L Spergel et al. 2003
4
Cosmological Constant Problem
5
G+g=8T+VgG+g=8T+VgG+g=8T+VgG+g=8T+Vg Geometry Quantum Vacuum
6
Cosmological Constant Problem | -V|/M 2 Planck. 10 -123 :::: V:
7
Cosmological Constant Problem | -V|/M 2 Planck =10 -123 :::: V: percentaccuracy
8
for Physics for Physics Why so small with respect to any particle physics scale Why comparable to the cosmological critical density today Two Two
9
Dark Energy Models Trans-Planckian: energy stored in perturbations with wavenumber beyond the Planck scale (Mersini et al. 2001)Trans-Planckian: energy stored in perturbations with wavenumber beyond the Planck scale (Mersini et al. 2001) Spacetime microstructure: self-adjusting spacetime capable to absorbe vacuum energy (Padmanabhan, 2002)Spacetime microstructure: self-adjusting spacetime capable to absorbe vacuum energy (Padmanabhan, 2002) Matter-Energy Transition: dark matter undergoes a phase transition to dark energy at low redshifts (Basset et al. 2003)Matter-Energy Transition: dark matter undergoes a phase transition to dark energy at low redshifts (Basset et al. 2003) Brane worlds: brane tension (Shani & Sthanov 2002); cyclic-ekpyrotic cosmic vacuum (Steinhardt &Tutok 2001)Brane worlds: brane tension (Shani & Sthanov 2002); cyclic-ekpyrotic cosmic vacuum (Steinhardt &Tutok 2001) Exotic particle physics: photons oscillating in something else at cosmological distances (Csaki et al. 2002)Exotic particle physics: photons oscillating in something else at cosmological distances (Csaki et al. 2002) Chaplygin gas: dark matter and energy described by a single gas having variable equation of state (Den et al. 2003, Carturan & Finelli 2003)Chaplygin gas: dark matter and energy described by a single gas having variable equation of state (Den et al. 2003, Carturan & Finelli 2003) Scale-dependent Gravity: Gravity weaker on large scales (Dvali et al. 2003)Scale-dependent Gravity: Gravity weaker on large scales (Dvali et al. 2003) Quintessence: tracking scalar fields (Ratra & Peebles, Wetterich 1988, Coble et al. 1997, Ferreira & Joyce 1998, Liddle & Scherrer 1999, Steinhardt et al. 1999, Perrotta & Baccigalupi 1999, Brax & Martin 2000, Masiero et al. 2001, Doran et al. 2001, Corasaniti & Copeland 2003, ) Extended Quintessence: non-minimal coupling to Gravity (Chiba, Uzan 1999, Perrotta et al. 2000, Baccigalupi et al. 2000, Faraoni 2000, Bartolo & Pietroni 2000, Esposito-Farese & Polarski 2001, Perrotta & Baccigalupi 2002) Coupled Quintessence: coupling with dark matter (Carroll 1998, Amendola 2000, Matarrese et al. 2003) k-essence: modified kinetic scalar field energy (Aramendariz-Picon et al. 2001, Caldwell 2002, Malquarti et al. 2003)
10
Quintessence Field ! (t)+ (t,x), U( )
11
vs. Background energy density: dynamical, t 2 /2+U( ) Background pressure: dynamical, t 2 /2-U( ) Fluctuations, (t,x) Background energy density: =constant Background energy density: p=-constant No fluctuations Constant equation of state, w=p/ Dynamical equation of state, w=p/
12
Quintessence Field ! (t)+ (t,x), U( ) U( ) / (Ratra & Peebles 1988) U( ) / cos (Coble et al. 1997) U( ) / exp (Wetterich 1988) … U( ) / exp( 2 )(Brax & Martin 2000)
13
w today WMAP+ACBAR+CBI+2dF+Ly Spergel et al. 2003 w < -0.8 (2 )
14
Effects on the CMB Power Spectrum Projection Projection Integrated Sachs-Wolfe Integrated Sachs-Wolfe
15
Dark Energy & CMB power spectrum Balbi et al. 2001, Baccigalupi et al. 2002:evidence for w ' –0.8, h fixed and =1 Balbi et al. 2001, Baccigalupi et al. 2002:evidence for w ' –0.8, h fixed and =1 Efstathiou 2002: tensor degeneracy for cosmological parameters Efstathiou 2002: tensor degeneracy for cosmological parameters Bean & Melchiorri 2002: degeneracy with hBean & Melchiorri 2002: degeneracy with h Balbi et al. 2003: degeneracy with Balbi et al. 2003: degeneracy with
16
A CMBfast plug-in for scalar field dark energy DE fast Features: Quintessence evolution in ordinary and scalar-tensor cosmology SUGRA and RP tracking trajectories Scalar field fluctuations User specifies Q, w 0, and the scenario to obtain the right trajectory
17
Dark Energy & CMB power spectrum
18
Dark Energy & CMB: beyond C l s Giovi et al. 2003, PRD in press, astro-ph/0308118
19
CMB bispectrum B l m l` m` l`` m`` =a lm a l`m` a l``m`` a lm = s ( )Y lm ( )d B l l`l`` = m m` m`` ( m l m` l` m`` l`` ) a lm a l`m` a l``m`` l l` l`` ( ) ´ T( )/T
20
CMB bispectrum & Structure Formation =0 =0 0 0
21
CMB bispectrum & Structure Formation =[(2l+1)(2l`+1)(2l``+1)/16 ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ =[(2l+1)(2l`+1)(2l``+1)/16 ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ ¢ [l(l+1)- l`(l`+1)+ l``(l``+1) ] C l Q(l``) +Perm. Q(l)= s 0 dec D(z) F(z) dz D(z)=[r(z dec )-r(z)]/r(z dec )r(z) 3 F(z)=dP /dz| k=l/r(z) P =(3 m0 /2) 2 (H 0 /ck) 4 P(k,z)(1+z) 2 P(k,z)=Ak n T(k,z) 2 ( ) = lss ( + )+ ISW ' lss ( )+ r lss ( ) ¢ ISW ( )=2 s 0 dec dr d (r, )/d =2 s 0 dec dr[(r-r dec )/r dec r] r, ) Hu & White 1997, Bartelmann & Schneider 2001, Komatsu & Spergel 2001, Verde & Spergel 2002
22
CMB bispectrum & Structure Formation l -1 =2 /k=r(z 3 )/l =2 /k=r(z 3 )/l =r(z 2 )/l =r(z 2 )/l =r(z 1 )/l =r(z 1 )/l r(z 1 ) r(z 2 ) r(z 3 ) z1z1z1z1 z2z2z2z2 z3z3z3z3 z r
23
CMB bispectrum line of sight chronology l -1 horizon crossing, decaying linearly, dQ/dz>0 z !1 :super-horizon scales in a flat CDM universe, dP /d =0, dQ/dz ! 0 z r Non-linearity, grows, dQ/dz<0 z ! 0, vanishes, dQ/dz ! 0 onset of acceleration, change in cosmic equation of state, decaying linearly, dQ/dz>0
24
CMB bispectrum line of sight distribution Giovi et al. 2003, PRD in press, astro-ph/0308118
25
CMB bispectrum & Dark Energy Quintessence reference models SUGRA RP
26
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118 Ma et al. 1999, Smith et al. 2003
27
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118
28
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118
29
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118
30
CMB bispectrum & Structure Formation =0 =0 0 0 Giovi, Liguori et al. 2004, in preparation =2 s 0 dec dr[(r-r dec )/r dec r] r, )
31
N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted, see also Klypin et al. 2003, Linder & Jenkins 2003
32
N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted GADGET (Springel et al. 2001) initial box: 512 3 particles, side = 479h -1 M , 8 today fixed to 0.9 Dark energy in background expansion, linear growth rate Haloes fitted with NFW
33
N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted Quintessence reference models
34
N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted tt +2H t –4 G =0, D + (z)= (z)/ 0
35
N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted c(M,z)=c 0 /(1+z)(M/10 14 h M )
36
N-body in Dark Energy Cosmology Dolag et al. 2003, A&A submitted c(M,z)=[c 0 /(1+z)](M/10 14 h M ) is c 0 dependent on the dark energy dynamics? can such dependence be predicted? c 0 ! c 0 CDM ¢ D + (z coll ) / D + CDM (z coll )
37
Dark Energy in Generalized Cosmologies L=f( ,R)/2-[ ( )/2] ; ; -U( )- - k [ ; ; +V( k )+W( , k )] - k [ ; ; +V( k )+W( , k )]
38
Dark Energy in Generalized Cosmologies L=f( ,R)/2-[ ( )/2] ; ; -U( )- - k [ ; ; +V( k )+W( , k )] - k [ ; ; +V( k )+W( , k )] Quintessence
39
Dark Energy in Generalized Cosmologies L=f( ,R)/2-[ ( )/2] ; ; -U( )- - k [ ; ; +V( k )+W( , k )] - k [ ; ; +V( k )+W( , k )] Extended Quintessence
40
Dark Energy in Generalized Cosmologies L=f( ,R)/2-[ ( )/2] ; ; -U( )- - k [ ; ; +V( k )+W( , k )] - k [ ; ; +V( k )+W( , k )] Coupled Quintessence
41
Dark Energy in Generalized Cosmologies L=f( ,R)/2-[ ( )/2] ; ; -U( )- - k [ ; ; +V( k )+W( , k )] - k [ ; ; +V( k )+W( , k )] k-essence
42
Dark Energy in Generalized Cosmologies L=f( ,R)/2-[ ( )/2] ; ; -U( )- - k [ ; ; +V( k )+W( , k )] - k [ ; ; +V( k )+W( , k )] New Gravity
43
Bravely facing the Coincidence What happens at that epoch? Cosmic acceleration is a recent occurrence, say z of order unity … funny physics: the formation of cosmological clumps affects the cosmological vacuum state matter over-densities move the dark energy field out of the potential minimum
44
Extended Quintessence & New Gravity H 2 = (8 G/3)[ + stuff ] stuff = (1/8 GF)[ (1-8 G F) + t 2 /2+(RF-f)/2+V-3HF t ] H t = - 4 G[ + p + stuff ] stuff = (1/8 GF)[( p)(1-8 G F) + t 2 +F tt -HF t ] non-minimal coupling: f=F ¢ R new gravity: f(R) R/8 G Hwang 1991, generalized cosmologies F= f / R
45
Extended Quintessence k 2 =4 k 3 ( / ) k 2 Perrotta, Baccigalupi, Matarrese, PRD 2000, Baccigalupi, Matarrese, Perrotta, PRD 2000 m m m m c 2 eff, 1 G= T G= T G= T G= T Perrotta, Baccigalupi 2002 G= T G= T G= T G= T Perrotta et al. 2003, PRD submitted
46
Non-linear Clustering in Extended Quintessence G= T G= T G= T G= T ds 2 =a 2 [(-1+2 )d 2 +(1-2 ) ij dx i dx j ] r 2 = (1/2F)[a 2 m +a 2 U+ r 2 ( F)+| r ( | 2 /2] r 2 =(1/2F)[a 2 m -2a 2 U- r 2 ( F)] r 2 ( ) =a 2 U-(dF/d /2F)[a 2 m +4a 2 U+3 r 2 ( F)+| r ( | 2 /2]-a 2 (dF/d )R Perrotta et al. 2003, PRD submitted
47
Non-linear Clustering in Extended Quintessence G= T G= T G= T G= T ds 2 =a 2 [(-1+2 )d 2 +(1-2 ) ij dx i dx j ] r 2 = (1/2F)[a 2 m +a 2 U+ r 2 ( F)+| r ( | 2 /2] r 2 =(1/2F)[a 2 m -2a 2 U- r 2 ( F)] r 2 ( ) =a 2 U-(dF/d /2F)[a 2 m +4a 2 U+3 r 2 ( F)+| r ( | 2 /2]-a 2 (dF/d )R Perrotta et al. PRD 2004
48
Continua… CMB & bispectrum,*observability*, vary cosmological parameters, non-linearity, … CMB & bispectrum,*observability*, vary cosmological parameters, non-linearity, … N-body, gain statistics, check concentration dependence on w(z), *lensing*… N-body, gain statistics, check concentration dependence on w(z), *lensing*… Generalized cosmologies, are *dark haloes* affected? If so, check with N-body, …Generalized cosmologies, are *dark haloes* affected? If so, check with N-body, …
49
Dark Energy
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.