Presentation is loading. Please wait.

Presentation is loading. Please wait.

Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.

Similar presentations


Presentation on theme: "Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004."— Presentation transcript:

1 Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004

2 Observational status Structure formations Initial conditions Cosmological parameters Degeneracies   h   cb, n S ,  8 Minimal model and its extensions Problems

3 Cosmic Hubble parameter Tegmark et al., 2003

4 Observational status 0.02

5 Coincidence between two scales: LSS (DM) and CMB (DB)

6 LSS and CMB scales z < z eq : K eq -1 DM K rec -1 B  x, LSS : CMB :

7 Message from the early Universe: Baryon asymmetry is related to dark matter

8 Independent determination of initial and boundary conditions

9 Theory of gravitational instability Zero order (Hubble diagram) First order (density perturbations spectrum) Cosmological model – in two functions

10 f c, f b, f FU (late)      m  X  Model IU (early)A S n S  S A T n T LSS spectrum  CMB spectrum  IUFU IUFU + ( T )

11 Data mapping in k-space data point : window spectrum  probability distribution in k space CMB : P (k)

12  10 4 k Tegmark, Zaldarriaga, 2002

13

14 Cosmological initial conditions

15 Generation of density perturbations in the very early Universe Seeds – quantum vacuum fluctuations of density (phonons) Parametric amplification of density perturbations in the expanding Universe – spontaneous creation of phonons, k ~ k H ~ 1 mm -1 Stretching inhomogeneities on cosmological scales by inflation, k >> k H ~ 1  100 Мpc -1

16

17 Lagrangian theory of q field ( V.N.L., 1980): In conformal coordinates:

18

19 Observational constraints on inflationary models

20 V(  ): classification of potentials Large field inflation Small field inflation  (hybrid)-inflation

21 Models and observational quantities (T/S - n S )

22  -inflation (  =4) Е.V.Mikheeva, V.N.Lukash, 2004

23 M.Tegmark et al., 2003 V(  )~1-(  /  * ) 2 0.9 0.6 0.3 WMAP + SDSS r = -8n T T/S = 0.6 r

24 Chaotic inflation: m  2 - solid grounds  4 - severe trouble If n S >1 -  -inflation n S <1 - «chaotic» or «new» or … Inflationary model will be recognized in the nearest future

25 Minimal model n S =1  0 =1  T/S=0  f =0  degeneracies:geometrytensorneutrino 4 parameters of MM: (error bars <10%)

26 A large number of observational points (~ 2000) can be fitted by only four parameters of MM

27 Reionization puzzle QSO end of reionization: z~10 Evolution of star formation: flat out to z~6 Most distant galaxy: z~10 QSO: z=6.41 Two reionization epochs ? z~20 (massive stars) z~10 (normal stars, QSO)

28 Arguments for  >0 Hubble diagram: SN Ia (correction for metallicity?) Dynamics: ISW (galaxies at z~0.5) Structure: P(k)

29 Reiss et al., 2002

30 Riess et al., 2004

31

32 N.Kardashev, ApJ 150, L135 (1967)

33 Dynamical impact of vacuum cross-correlation between maps of galaxies and CMB

34 K eq = a H~  m h 2 =  m h (h/Mpc) Structure argument (solid!)  CMB  LSS

35 ... and counter-arguments Weak lensing (  m ~1) Problems of  CDM: –absence of cusps in galaxy centres (stability of galaxy bars) –absence of substructure in galaxy halos (stability of spiral pattern in galaxy disks) –small number of low-massive galaxies –flat luminosity and correlation functions of galaxies

36 Myers et al., 2003 Angular cross-correlation between distant QSOs and nearby clusters of galaxies (APM/SDSS)

37 Substructure in galaxy halo (simulations) Diemand et al., 2004  ~r -   (1, 3/2)

38 Among best-fit models (WMAP & 2dF)  m =1,   =0  =0.2,  c =0.7 H 0 = 45 km s -1 Mpc -1 ↓ contradiction: local H 0 (60  70 km s -1 Mpc -1 ) (SZ, gravitational lenses: 50  20) SN Ia cluster evolution Ly 

39 Degeneracies in cosmological parameter space (reason – bad data, region – 10 % of ММ): geometrical (  m h 2 ~ const,  0 ) tensor (n S ~ f b ) neutrino (  m ~ f )

40 Geometrical degeneracy (  0 =1.01  0.02) h  0 5 = 0.7 T 0 = 13.5  0 5/2 Gyrs

41 Hubble constant and the age of the Universe vs  tot Tegmark et al., 2003

42

43 If m <0.7 eV, then z <z rec (3T  m : z  10 3 [m /0.7 eV])  h 2 =  m /93 eV < 0.02   b h 2 f   /  m 0.1) CMB ⇒  cb h 2  m =  cb + ,  m (1- f )=const   cb (fixed by CMB)   + a f = b (  m +   = 1, a =  cb, b = 1 -  cb )

44   + 0.5 f = 0.65  0.1 Arhipova et al., 2002

45 Novosyadlyj et al., 2000

46 Cosmological parameters CMB  LSS no GW, +GW, no +GW,,BBN mh2mh2 0.140.120.16 mhmh0.20.170.25 bh2bh2 0.0210.0250.020 fbfb 0.150.220.10 f --0.05 nSnS 1.01.1 T/S-0.20.3  000  0.70.80.6

47 Conclusions

48 Breaking degeneracy between initial and boundary conditions in cosmology Stable prediction: n S  1,    0,    0.6  0.7 Best-fit model: f ~ f b ~ 10%,  m ~ 0.4, h ~ 0.65 (MM: f b ~ 15%,  m ~ 0.3, h~ 0.7) If  m  0.3, then   0, h  0.7  m > 0.3,   0.1, h < 0.7

49 ??? m  0.04  0.4 eV (f <0.1: m <0.4 eV) early ionization (z~20) T/S  0.2 small C 2, C 3 distortions ~30, 200 high  2 the running parameter

50 Unsolved fundamental problems: Dark matter (multicomponent):  b  ,  c ~  m ~   Cosmological constant:   ~M 4 = (10 -3 eV) 4 = standard model: M ~1 TeV GUT: M ~10 13 GeV quantum gravity: M ~10 19 GeV Coincidence of СМВ and LSS scales (relation between baryon asymmetry and dark matter) T/S → energy scale of inflation

51 2dF Galaxy Redshift Survey O.Lahav et al., 2002

52 Beyond concordance model:  opt ~ 0.17 Low C 2,3, deviations (>3  ) at l~30, 200 Rolling of spectral index Poor  2 of concordance model (others in 1  ) Spectral excess at l~2500 (CBI, ACBAR) QSO: end of reionization at z~6 Evolution of star formation: flat out to z~6 Most distant galaxy: z=6.56 QSO:z=6.41 New: two reionization epochs At z~20 (massive stars, QSO) At z~6 (normal stars, QSO)

53 T.Shanks, astro-ph/0401409 Cross-correlation between WMAP (94 GHz) and galaxy clusters (АСО, R  2)

54 T.Shanks, astro-ph/0401409


Download ppt "Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004."

Similar presentations


Ads by Google