Download presentation
Presentation is loading. Please wait.
Published byEvelyn Wade Modified over 9 years ago
1
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004
2
Observational status Structure formations Initial conditions Cosmological parameters Degeneracies h cb, n S , 8 Minimal model and its extensions Problems
3
Cosmic Hubble parameter Tegmark et al., 2003
4
Observational status 0.02
5
Coincidence between two scales: LSS (DM) and CMB (DB)
6
LSS and CMB scales z < z eq : K eq -1 DM K rec -1 B x, LSS : CMB :
7
Message from the early Universe: Baryon asymmetry is related to dark matter
8
Independent determination of initial and boundary conditions
9
Theory of gravitational instability Zero order (Hubble diagram) First order (density perturbations spectrum) Cosmological model – in two functions
10
f c, f b, f FU (late) m X Model IU (early)A S n S S A T n T LSS spectrum CMB spectrum IUFU IUFU + ( T )
11
Data mapping in k-space data point : window spectrum probability distribution in k space CMB : P (k)
12
10 4 k Tegmark, Zaldarriaga, 2002
14
Cosmological initial conditions
15
Generation of density perturbations in the very early Universe Seeds – quantum vacuum fluctuations of density (phonons) Parametric amplification of density perturbations in the expanding Universe – spontaneous creation of phonons, k ~ k H ~ 1 mm -1 Stretching inhomogeneities on cosmological scales by inflation, k >> k H ~ 1 100 Мpc -1
17
Lagrangian theory of q field ( V.N.L., 1980): In conformal coordinates:
19
Observational constraints on inflationary models
20
V( ): classification of potentials Large field inflation Small field inflation (hybrid)-inflation
21
Models and observational quantities (T/S - n S )
22
-inflation ( =4) Е.V.Mikheeva, V.N.Lukash, 2004
23
M.Tegmark et al., 2003 V( )~1-( / * ) 2 0.9 0.6 0.3 WMAP + SDSS r = -8n T T/S = 0.6 r
24
Chaotic inflation: m 2 - solid grounds 4 - severe trouble If n S >1 - -inflation n S <1 - «chaotic» or «new» or … Inflationary model will be recognized in the nearest future
25
Minimal model n S =1 0 =1 T/S=0 f =0 degeneracies:geometrytensorneutrino 4 parameters of MM: (error bars <10%)
26
A large number of observational points (~ 2000) can be fitted by only four parameters of MM
27
Reionization puzzle QSO end of reionization: z~10 Evolution of star formation: flat out to z~6 Most distant galaxy: z~10 QSO: z=6.41 Two reionization epochs ? z~20 (massive stars) z~10 (normal stars, QSO)
28
Arguments for >0 Hubble diagram: SN Ia (correction for metallicity?) Dynamics: ISW (galaxies at z~0.5) Structure: P(k)
29
Reiss et al., 2002
30
Riess et al., 2004
32
N.Kardashev, ApJ 150, L135 (1967)
33
Dynamical impact of vacuum cross-correlation between maps of galaxies and CMB
34
K eq = a H~ m h 2 = m h (h/Mpc) Structure argument (solid!) CMB LSS
35
... and counter-arguments Weak lensing ( m ~1) Problems of CDM: –absence of cusps in galaxy centres (stability of galaxy bars) –absence of substructure in galaxy halos (stability of spiral pattern in galaxy disks) –small number of low-massive galaxies –flat luminosity and correlation functions of galaxies
36
Myers et al., 2003 Angular cross-correlation between distant QSOs and nearby clusters of galaxies (APM/SDSS)
37
Substructure in galaxy halo (simulations) Diemand et al., 2004 ~r - (1, 3/2)
38
Among best-fit models (WMAP & 2dF) m =1, =0 =0.2, c =0.7 H 0 = 45 km s -1 Mpc -1 ↓ contradiction: local H 0 (60 70 km s -1 Mpc -1 ) (SZ, gravitational lenses: 50 20) SN Ia cluster evolution Ly
39
Degeneracies in cosmological parameter space (reason – bad data, region – 10 % of ММ): geometrical ( m h 2 ~ const, 0 ) tensor (n S ~ f b ) neutrino ( m ~ f )
40
Geometrical degeneracy ( 0 =1.01 0.02) h 0 5 = 0.7 T 0 = 13.5 0 5/2 Gyrs
41
Hubble constant and the age of the Universe vs tot Tegmark et al., 2003
43
If m <0.7 eV, then z <z rec (3T m : z 10 3 [m /0.7 eV]) h 2 = m /93 eV < 0.02 b h 2 f / m 0.1) CMB ⇒ cb h 2 m = cb + , m (1- f )=const cb (fixed by CMB) + a f = b ( m + = 1, a = cb, b = 1 - cb )
44
+ 0.5 f = 0.65 0.1 Arhipova et al., 2002
45
Novosyadlyj et al., 2000
46
Cosmological parameters CMB LSS no GW, +GW, no +GW,,BBN mh2mh2 0.140.120.16 mhmh0.20.170.25 bh2bh2 0.0210.0250.020 fbfb 0.150.220.10 f --0.05 nSnS 1.01.1 T/S-0.20.3 000 0.70.80.6
47
Conclusions
48
Breaking degeneracy between initial and boundary conditions in cosmology Stable prediction: n S 1, 0, 0.6 0.7 Best-fit model: f ~ f b ~ 10%, m ~ 0.4, h ~ 0.65 (MM: f b ~ 15%, m ~ 0.3, h~ 0.7) If m 0.3, then 0, h 0.7 m > 0.3, 0.1, h < 0.7
49
??? m 0.04 0.4 eV (f <0.1: m <0.4 eV) early ionization (z~20) T/S 0.2 small C 2, C 3 distortions ~30, 200 high 2 the running parameter
50
Unsolved fundamental problems: Dark matter (multicomponent): b , c ~ m ~ Cosmological constant: ~M 4 = (10 -3 eV) 4 = standard model: M ~1 TeV GUT: M ~10 13 GeV quantum gravity: M ~10 19 GeV Coincidence of СМВ and LSS scales (relation between baryon asymmetry and dark matter) T/S → energy scale of inflation
51
2dF Galaxy Redshift Survey O.Lahav et al., 2002
52
Beyond concordance model: opt ~ 0.17 Low C 2,3, deviations (>3 ) at l~30, 200 Rolling of spectral index Poor 2 of concordance model (others in 1 ) Spectral excess at l~2500 (CBI, ACBAR) QSO: end of reionization at z~6 Evolution of star formation: flat out to z~6 Most distant galaxy: z=6.56 QSO:z=6.41 New: two reionization epochs At z~20 (massive stars, QSO) At z~6 (normal stars, QSO)
53
T.Shanks, astro-ph/0401409 Cross-correlation between WMAP (94 GHz) and galaxy clusters (АСО, R 2)
54
T.Shanks, astro-ph/0401409
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.