Presentation is loading. Please wait.

Presentation is loading. Please wait.

Entanglement entropy scaling of the XXZ chain

Similar presentations


Presentation on theme: "Entanglement entropy scaling of the XXZ chain"— Presentation transcript:

1 Entanglement entropy scaling of the XXZ chain
Pochung Chen 陳柏中 National Tsing Hua University, Taiwan 10/14/2013, IWCSE, NTU

2 Acknowledgement Collaborators Reference Funding Zhi-Long Xue (NTHU)
Ian P. McCulloch (UQ, Australia) Ming-Chiang Chung (NCHU) Miguel Cazalilla (NTHU) Chao-Chun Huang (IoP, Sinica) Sung-Kit Yip (IoP, Sinica) Reference J. Stat. Mech. (2013) P (arXiv: ) Funding NSC, NCTS

3 Outline Introduction Entropy scaling Spin-1/2 XXZ model Summary
Entanglement, entropy, area law Entropy scaling Conformal field theory Ferromagnetic point Spin-1/2 XXZ model Entanglement entropy scaling Renyi entropy scaling Summary

4 Introduction

5 Quantum Entanglement Partition of the Hilbert space Product state
ℋ= ℋ 𝐴 ⊗ ℋ 𝐵 Product state 𝜓 = 𝜓 𝐴 | 𝜓 𝐵 〉 𝜓 = 0 |0〉 Entangled state 𝜓 = 1 √ |1〉 ≠ 𝜓 𝐴 | 𝜓 𝐵 〉

6 Reduced Density Matrix
Partition of the Hilbert space ℋ= ℋ 𝐴 ⊗ ℋ 𝐵 Start from a pure state 𝜓 Trace out ℋ 𝐵 to get the reduce density matrix 𝜌 𝐴 = Tr 𝐵 𝜓 〈𝜓| Product state  is pure 𝜓 = 0 0 → 𝜌 𝐴 = 0 〈0| Entangled state  is mixed 1 √ |1〉 → 𝜌 𝐴 = 〈0|+ 1 〈1|

7 Entropy as a Measure of Entanglement
Entanglement entropy=von Neumann entropy 𝑆 1 =− Tr 𝐴 ( 𝜌 𝐴 log 𝜌 𝐴 ) Renyi entropy 𝑆 𝑛≥2 = 1 1−𝑛 ln Tr 𝐴 𝜌 𝐴 𝑛 𝑆 1 = lim 𝑛→1 𝑆 𝑛

8 Entanglement Area Law Local Hamiltonian + Gapped ground state
𝑆 𝐴 ∝𝜕𝐴 Violation of area law Logarithmic correction Fermi surface Conformal field theory Permutation symmetry

9 Entanglement Entropy 𝜌 𝐴 = Tr 𝐵 | 𝜙 𝑔𝑠 𝜙 𝑔𝑠 | 𝑆 𝐴 =−Tr 𝜌 𝐴 log 𝜌 𝐴 𝑙 𝐿
B A B 𝑙 A B 𝐿 𝜉 A B

10 Entanglement Entropy Scaling With Conformal Invariance
Periodic boundary condition (PBC) Open boundary condition (OBC) Off-critical spin chain with correlation length ξ 𝑆 1 𝑙,𝐿 = 𝑐 3 log 𝐿 𝜋 sin 𝜋𝑙 𝐿 + 𝑐 1 ′ → c 3 logL 𝑆 1 (𝑙,𝐿)= 𝑐 6 log 𝐿 𝜋 sin 𝜋𝑙 𝐿 + 𝑐 1 ′ +𝑔 → c 6 logL 𝑆 1 (𝜉)~ 𝑐 6 log 𝜉 P. Calabrese and J. Cardy, JSTAT/2004/P06002

11 DMRG for Entanglement Entropy Scaling
SU(3) Heisenberg model M. Führinger, S. Rachel, R. Thomale, M. Greiter, P. Schmitteckert, Ann. Phys. 17, 922 (2008)

12 Entanglement Entropy Scaling
Spin-1/2 XXZ Model Entanglement Entropy Scaling

13 Case 1: Spin-1/2 XXZ Model 𝐻= 𝑖=1 𝐿 𝑆 𝑖 + 𝑆 𝑖+1 − + 𝑆 𝑖 − 𝑆 𝑖 ∆ 𝑆 𝑖 𝑧 𝑆 𝑖+1 𝑧 Δ>+1: Neel phase Δ<−1: Ferromagnetic Ising phase −1<Δ≤+1: Gapless critical XY phase with c=1 U(1) symmetry Unique ground state 𝑆 𝑧,𝑡𝑜𝑡 =0 Δ=−1: Ferromagnetic point Hamiltonian has enlarged SU(2) symmetry Infinite degenerate ground state Particular ground state that is smoothly connected to the ground date in the critical XY phase

14 Entanglement Entropy Scaling of Spin ½ XXZ Model
-0.75 L=200 G. De Chiara, S. Montangero, P. Calabrese, R. Fazio, JSTAT/2006/P03001

15 Entanglement Entropy Scaling Without Conformal Invariance
Spin chain with random interaction G. Refael and J. E. Moore, J. Phys. A: Math. Theor. 42 (2009) Lipkin-Meshkov-Glick model José I. Latorre, Román Orús, Enrique Rico, Julien Vidal, Phys. Rev. A 71, (2005) Permutation-invariant states (Ferromagnetic point) Vladislav Popkov, Mario Salerno, PRA 71, (2005) Olalla A. Castro-Alvaredo, Benjamin Doyon, JSTAT/2011/P02001 Olalla A. Castro-Alvaredo, Benjamin Doyon, PRL 108, (2012) Vincenzo Alba, Masudul Haque, Andreas M Lauchli, JSTAT/2012/P08011 Olalla A. Castro-Alvaredo, Benjamin Doyon, JSTAT/2013/P02016

16 Entanglement Scaling of Permutation-Invariant States
Ground state at ferromagnetic point with 𝑆 𝑧,𝑡𝑜𝑡 =0 Vladislav Popkov, Mario Salerno, PRA 71, (2005) Olalla A. Castro-Alvaredo, Benjamin Doyon, JSTAT/2011/P02001d DMRG: 𝑆 1 = 1 2 log 𝐿 → = 𝑐 3 log 𝐿 →𝑐= 3 2 >1 iDMRG: 𝑆 1 = 1 2 log 𝜉 → = 𝑐 6 log 𝜉 →𝑐=3>1 Fit 𝑆 1 𝑙,𝐿 = 𝑐 3 log 𝐿 𝜋 sin 𝜋𝑙 𝐿 + 𝑐 1 ′ to get c(m,L)

17 Finite-Size DMRG

18 iDMRG 𝜉 𝑐 𝐹 Δ

19 Identify CFT without Using Entanglement Scaling

20 Finite-Size Scaling of Ground and Excited States Energies
Finite-size correction of ground state energy 𝐸 𝑔 (𝐿) 𝐿 = 𝜀 ∞ − 𝜋𝑣 6 𝐿 2 𝑐 Finite-size correction of excited state energy 𝐸 𝑛 𝐿 − 𝐸 𝑔 𝐿 = 2𝜋𝑣 𝐿 𝑥 𝑛 Spin-wave velocity 𝑣= 𝜋 sin 𝜇 2𝜇 , ∆= cos 𝜇

21 Finite-Size Scaling of Ground State Energy

22 Spin-Wave Velocity & Scaling Dimension

23 Some Remarks c(m,L) is a decreasing function of L
c(m,L) is an increasing function of m True 𝑐= lim 𝐿→∞,𝑚→∞ 𝑐 (𝑚,𝐿) Be careful about the error cancelation Crossover behavior is observed in iDMRG How to measure the ferromagnetic length scale?

24 Spin-1/2 XXZ Model Renyi Entropy Scaling

25 How to Measure the Entropy of a Finite System?
Not easy to measure entanglement entropy Possible to measure Renyi entropy Possible reconstruct entanglement entropy from Renyi entropy

26 Renyi Entropy Scaling With Conformal Invariance
Periodic boundary condition (PBC) Open boundary condition (OBC) Off-critical spin chain with correlation length ξ 𝑆 𝑛 (𝑙,𝐿)= 𝑐 𝑛 log 𝐿 𝜋 sin 𝜋𝑙 𝐿 + 𝑐 1 ′ 𝑆 𝑛 (𝑙,𝐿)= 𝑐 𝑛 log 𝐿 𝜋 sin 𝜋𝑙 𝐿 + 𝑐 1 ′ +𝑔 𝑆 𝑛 (𝜉)~ 𝑐 𝑛 log 𝜉

27 Renyi Entropy Scaling of Permutation-Invariant States
Olalla A. Castro-Alvaredo, Benjamin Doyon, JSTAT/2011/P02001 CFT: 𝑆 𝑛 𝑙,𝐿 = 𝑐 𝑛 log 𝐿 𝜋 sin 𝜋𝑙 𝐿 ,𝑐=1 FM: 𝑆 𝑛 𝑙,𝐿 ∝ 1 2 log 𝐿 1 2 = 𝑐 𝑛 𝑛 ⇒ 𝑐 𝑛 =3 𝑛 𝑛+1 Renyi entropy scaling Calculate 𝑆 𝑛 (𝑙,𝐿) Fit CFT scaling to obtain 𝑐 𝑛 (𝐿) Expect that 𝑐 𝑛 𝐿 →𝑐 as 𝐿→∞

28 Spin ½ XXZ Model, Δ=−0.5

29 Observations 𝑐 1 is monotonically decreasing
𝑐 𝑛≥2 are monotonically increasing 𝑐 𝑛 →1 as 𝐿→∞ 𝑐 1 > 𝑐 2 > 𝑐 3 >⋯

30 Spin ½ XXZ Model, Δ=−0.9

31 Spin ½ XXZ Model, Δ=−0.99 𝑐 𝑛,𝑚𝑎𝑥 𝐿 𝑛,𝑐

32 Observations 𝑐 1 is monotonically decreasing 𝑐 𝑛≥2 𝑐 𝑛 →1 as 𝐿→∞
first increase to some maximal value 𝑐 𝑛,𝑚𝑎𝑥 at 𝐿 𝑛,𝑐 then decrease monotonically 𝑐 𝑛 →1 as 𝐿→∞ 𝑐 𝑖𝑛𝑓 >⋯ >𝑐 3 > 𝑐 2 > 𝑐 1 for 𝐿> 𝐿 𝑛,𝑐

33 𝑐 𝑛,𝑚𝑎𝑥 v.s. Δ 1 2 = 𝑐 𝑛 𝑛 ⇒ 𝑐 𝑛 =3 𝑛 𝑛+1

34 𝜉 𝑐 , 𝐿 𝑛≥2,𝑐 v.s. Δ

35 Renyi Entropy Scaling from IDRMG

36 Rényi Entropy Scaling (Spin-1/2 XXZ)

37 Rényi Entropy Scaling (Spin-1/2 XXZ)

38 How to Determine the CFT?
Use all possible methods to extract c and make sure they are consistent with each other Entanglement entropy scaling of finite system Entanglement entropy scaling of infinite system Finite-size scaling of ground state energy Finite-size scaling of excited state energy Energy spectrum from exact diagonalization May have strong finite-size; finite-truncation effects, especially near ferromagnetic phase May observe cross-over effects due to ferromagnetic phase

39 Conformal Invariance v.s. Permutation Symmetry
Case-1: 𝜉 𝑐 𝐹 > 𝜉 𝑐 When 𝜉< 𝜉 𝑐 𝐹  ceff from permutation symmetry When 𝜉> 𝜉 𝑐 𝐹  c from CFT Case-2: 𝜉 𝑐 𝐹 < 𝜉 𝑐 When 𝜉> 𝜉 𝑐  c from CFT When 𝜉 𝑐 >𝜉> 𝜉 𝑐 𝐹  c' from some approximated CFT?

40 Measuring the Ferromagnetic Entanglement
When the critical system is close to the ferromagnetic boundary, the groundstate wavefunction looks "ferromagnetic" at small length scale It is possible to detect this ferromagnetic length scale and the ferromagnetic scaling via measuring the Renyi entropy of a finite system Clear signature in iDMRG calculation


Download ppt "Entanglement entropy scaling of the XXZ chain"

Similar presentations


Ads by Google