Presentation is loading. Please wait.

Presentation is loading. Please wait.

E. Buitrago Advisors: Dr. A. Teleki and A. Tricoli

Similar presentations


Presentation on theme: "E. Buitrago Advisors: Dr. A. Teleki and A. Tricoli"— Presentation transcript:

1 The Effect of Dopants on TiO2 Solar Cell Efficiency Mini Project Presentation FS09
E. Buitrago Advisors: Dr. A. Teleki and A. Tricoli Particle Technology Laboratory Swiss Federal Institute of Technology (ETHZ)

2 Overview Introduction Global energy problem Solar Cell possibilities
Dye Sensitized Solar Cells Narrowing the TiO2 bandgap: doping Experimental FSP particle synthesis Photocatalytic Experiments Bandgap Calculations Results Fe Nb Ru Conclusion Outlook Future Work

3 World Energy Use http://www.flickr.com/photos/33264427@N06/3166865015/

4 Solar Cell Possibilities
$$$$$$ $$

5 Dye Sensitized Solar Cell (DSSC) Schematic
A.R. U. Absorbance Anode (-) 2 Cathode (+) 1 I- / I-3 Wide bandgap semiconductor Eg = 3.2 eV ~ 385 nm (4) Visible light: nm eV 3 Ru2+ → Ru3+ + e− Anode (oxi): 3I−→I−3 +2e− Cathode (red): I−3 +2e−→3I− 1. O’Regan et al. Nature 2. Nazeeruddin et al. J.Am.Chem.Soc 3. 4. Grätzel et al. MRS Bulletin 5

6 Maximizing Visible Light Absorption: Dopants
Bandgap Method Concentration 1. TiO2 3.2 eV (anatase) 2. Fe-TiO2 2.2 eV FSP 30 mol% Solubility limit 5 mol% 3. Ru-TiO2 2.56 eV Ion exchange 0.018 mol% 4. Nb-TiO2 2.9 eV Sol gel mol% 1. Grätzel et al. MRS Bulletin 2.Teoh et al. Catalysis Today. 2007 3. Khan et al. Appl. Surf. Sci. 2009 4. Salvador et al. Solar Energy Materials. 1980 0.03, 0.3, 1 mol% dopant

7 FSP Particle Synthesis
TiO2: 0.5 M TTIP in Xylene/Acetronile(3:1) Dopant Precursors : Fe: Iron Acetylacetonate Nb: Niobium 2-Ethylhexaonate Ru: Ruthenium (III) Acetylacetonate 5/5 Flame d Mädler et al. J. Aerosol Sci. 2002

8 Bandgap Calculations UV-vis Spectrometry Indirect Semiconductor hvα = const (hv-Eg)2 hv = energy of incident photon [eV] α = absorption coefficient [cm-1] α = A/l A = Absorbance (measured with UV-vis) l = cuvette length Singh et al. International Journal of Hydrogen Energy

9 Fe-TiO2 Bandgap and Rutile %
Teoh et al. mol % Eg [eV] Rutile % 3.2 15 0.5 3.13 18 2 2.9 32 0.03 mol% Fe Teoh et al. Catalysis Today

10 Photocatalytic Experiments with UV-Light
10 ppm Methylene Blue 8 W UV –lamp 366 nm Catalyst loading: 0.3 kg/m3 UV –Vis 665 nm Height et al. Applied Catalysis B

11 UV-Photocatalytic Testing Fe-TiO2
-0.5 kg(catalyst)/m3 -Hydrothermal doping -366 nm -100 ppm MB

12 Nb-TiO2 Bandgap and Rutile %
Nb2O5 Eg = 3.4 eV 0.03 mol% Nb Teleki et al. Sensor. Actuator. B. 2007 Salvador et al. Solar Energy Materials

13 UV-Photocatalytic Testing Nb-TiO2

14 Nb-TiO2 Outperforms TiO2

15 Ru-TiO2 Bandgap and Rutile %
Ru02 Eg = 2.4 eV 0.03 mol% Ru Gujar et al. Electrochemistry Communications

16 UV-Photocatalytic Testing Ru-TiO2

17 Conclusion TiO2 Bandgap reduced by FSP with Nb and Fe.
Highest bandgap reduction Fe- 1 mol%. Highest photocatalytic activity under UV light for Nb-TiO2 at 0.3 mol% by (2.95 eV).

18 Outlook Investigation of photocatalytic activity under visible light for Fe. = 5 mol% -1 kg(catalyst)/m3 -FSP -λ > 400 nm -10 oxalic acid Teoh et al. Catalysis Today

19 Future Work Synthesis of DSSC with best catalyst.

20 Appendix Bandgap Calculations Photocatalytic Process

21 Photocatalytic Process
Photo-generation of electron/hole pair Formation of radicals (Ox) Radical oxidation of organic compound Kim et al. Catalysis Letters. 2007

22 Fe-TiO2 Fe3+ ionic radius: 0.55 Å Ti4+ ionic radius is: 0.67 Å
Wikipedia Anatase Rutile 0.03 mol% Fe

23 Nb-TiO2 Nb5+ ionic radius: 0.64 Å Ti4+ ionic radius is: 0.68 Å
Wikipedia Anatase Rutile 0.03 mol% Nb

24 Ru-TiO2 Fe3+ ionic radius: 0.57.5 Å Ti4+ ionic radius is: 0.67 Å
Wikipedia Anatase Rutile 0.03 mol% Ru

25 Photocatalytic Testing with MB
0.004 mol% 0.04 mol% = 5 mol% -1 kg(catalyst)/m3 -Impregnation method n: Fe(NO3)3•9H2O a: Iron acetylacetonate complex -λ > 400 nm -5 ppm oxalic acid -0.5 kg(catalyst)/m3 -Hydrothermal doping -366 nm -100 ppm MB -0.5 kg(catalyst)/m3 -Impregnation method n: Fe(NO3)3•9H2O a: Iron acetylacetonate complex nm -5 ppm oxalic acid -1 kg(catalyst)/m3 -FSP -λ > 400 nm -10 oxalic acid Teoh et al. Catalysis Today Li et al. J. Hazardous Materias. 2008 Navío et al. Journal of Molecular Catalysis A

26

27 Bandgap Calculations Indirect Semiconductor hvα = const (hv-Eg)2 hv = energy of incident photon [eV] α = absorption coefficient [cm-1] α = A/l A = Absorbance (measured with UV-vis) l = cuvette length

28 Bandgap Calculations Fe

29 Bandgap Calculations Nb

30 Bandgap Calculations Ru

31 TiO2 Bond Orbitals Conduction Band Ti d + (O2p) O2P + ( Ti d)
Energy TiO2 Bond Orbitals Conduction Band Ti d + (O2p) Ti d Eg = 3.2 eV O2p O2P + ( Ti d) Valence Band


Download ppt "E. Buitrago Advisors: Dr. A. Teleki and A. Tricoli"

Similar presentations


Ads by Google