Download presentation
1
Section 4-4: The Isosceles Triangle Theorems
2
vertex angle leg leg base angle base angle base
3
Isosceles Triangle Definition: _______________________________________
A triangle with at least two congruent sides
4
Isosceles Triangle Theorem: __________________ _________________________________________ Converse of Isosceles Triangle Theorem: ________ __________________________________________________________________________________ If two sides of a triangle are congruent, then the angles opposite those sides are congruent. If two angles of a triangle are congruent, then the sides opposite those angles are congruent.
5
Corollary 1: An equilateral triangle is also ______________________.
Corollary 2: An equilateral triangle has three __________ angles. equiangular 60°
6
Corollary 3: The bisector of the vertex angle of an isosceles triangle is ___________________ to the base at its ____________. Corollary 4: An equiangular triangle is also _______________________. perpendicular midpoint equilateral
7
x = 70 x = 75 y = 40 y = 75
8
2x – 4 = x + 5 2x + 7 = 5x – 8 x = 9 15 = 3x x = 5
9
62° (2x)° 2x + 2x + x = 180 x = 42 5x = 180 x = 36
10
40° 65° 70° x = 50 x = 50
11
In Exs. 9 and 10, 𝐵𝐶 ≅ 𝐴𝐶 . 9. If the m∠1=140°, m∠2 = _________. m∠3 = _________, m∠4 = _________. 10. If the m∠4 = 65°, m∠3 = ________, m∠2 = ________, m∠1 = ________. 40° 70° 70° 65° 50° 130°
12
11. Place the statements in an appropriate order for a proof and give the reasons.
Given: ∠1≅∠2 Prove: 𝑂𝐾 ≅ 𝑂𝐽 a) ∠3≅∠4 b) ∠2≅∠4; ∠3≅∠1 c) 𝑂𝐾 ≅ 𝑂𝐽 d) ∠1≅∠2 d; Given b; Vertical ∠ ′ 𝑠 𝑎𝑟𝑒 ≅ a; Substitution Prop c; Converse of Isosceles Triangle Thm.
13
𝑂𝐾 ≅ 𝑂𝐽 Given ∠3 ≅ ∠4 Isoc. ∆ Thm. ∠1 ≅ ∠3; ∠2 ≅ ∠4;
12. Write a two-column proof. Given: 𝑂𝐾 ≅ 𝑂𝐽 Prove: ∠1 ≅ ∠2 STATEMENTS REASONS 1. ______________________________ 1. _____________________ 2. ______________________________ 2. _____________________ 3. ______________________________ 3. _____________________ 4. ______________________________ 4. _____________________ 𝑂𝐾 ≅ 𝑂𝐽 Given ∠3 ≅ ∠4 Isoc. ∆ Thm. ∠1 ≅ ∠3; ∠2 ≅ ∠4; Vertical ∠’s are ≅. ∠1 ≅ ∠2 Substitution Prop.
14
HOMEWORK: page 137 #1-10 all (#9, 10 give reasons)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.