Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 8: Rotational Motion

Similar presentations


Presentation on theme: "Chapter 8: Rotational Motion"— Presentation transcript:

1 Chapter 8: Rotational Motion
PHYSICS Principles and Problems Chapter 8: Rotational Motion

2 Rotational Motion BIG IDEA
CHAPTER8 Rotational Motion BIG IDEA Applying a torque to an object causes a change in that object’s angular velocity.

3 Section 8.1 Describing Rotational Motion
CHAPTER8 Table Of Contents Section Describing Rotational Motion Section Rotational Dynamics Section Equilibrium Click a hyperlink to view the corresponding slides. Exit

4 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion MAIN IDEA Angular displacement, angular velocity, and angular acceleration all help describe angular motion. Essential Questions What is angular displacement? What is average angular velocity? What is average angular acceleration, and how is it related to angular velocity?

5 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Review Vocabulary displacement change in position having both magnitude and direction; it is equal to the final position minus the initial position. New Vocabulary Radian Angular displacement Angular velocity Angular acceleration

6 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Displacement A fraction of one revolution can be measured in grads, degrees, or radians. A grad is of a revolution. A degree is of a revolution.

7 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Displacement (cont.) The radian is defined as of a revolution. One complete revolution is equal to 2 radians. The abbreviation of radian is ‘rad’.

8 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Displacement (cont.) The Greek letter theta, θ, is used to represent the angle of revolution. The counterclockwise rotation is designated as positive, while clockwise is negative.

9 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Displacement (cont.) As an object rotates, the change in the angle is called angular displacement. For rotation through an angle, θ, a point at a distance, r, from the center moves a distance given by d = rθ.

10 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Velocity Velocity is displacement divided by the time taken to make the displacement. The angular velocity of an object is angular displacement divided by the time required to make the displacement.

11 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Velocity (cont.) The angular velocity of an object is given by: Here angular velocity is represented by the Greek letter omega, ω. The angular velocity is equal to the angular displacement divided by the time required to make the rotation.

12 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Velocity (cont.) If the velocity changes over a time interval, the average velocity is not equal to the instantaneous velocity at any given instant. Similarly, the angular velocity calculated in this way is actually the average angular velocity over a time interval, t. Instantaneous angular velocity is equal to the slope of a graph of angular position versus time.

13 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Velocity (cont.) Angular velocity is measured in rad/s. For Earth, ωE = (2π rad)/[(24.0 h)(3600 s/h)] = 7.27×10─5 rad/s.

14 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Velocity (cont.) In the same way that counterclockwise rotation produces positive angular displacement, it also results in positive angular velocity. If an object’s angular velocity is ω, then the linear velocity of a point at distance, r, from the axis of rotation is given by v = rω. The speed at which an object on Earth’s equator moves as a result of Earth’s rotation is given by v = r ω = (6.38×106 m) (7.27×10─5 rad/s) = 464 m/s.

15 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Velocity (cont.) Earth is an example of a rotating, rigid object. Even though different points on Earth rotate different distances in each revolution, all points rotate through the same angle. The Sun, on the other hand, is not a rigid body. Different parts of the Sun rotate at different rates.

16 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Acceleration Angular acceleration is defined as the change in angular velocity divided by the time required to make that change. The angular acceleration, α, is represented by the following equation:

17 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Acceleration (cont.) Angular acceleration is measured in rad/s2. If the change in angular velocity is positive, then the angular acceleration is also positive. Angular acceleration defined in this way is also the average angular acceleration over the time interval Δt.

18 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Acceleration (cont.) One way to find the instantaneous angular acceleration is to find the slope of a graph of angular velocity as a function of time. The linear acceleration of a point at a distance, r, from the axis of an object with angular acceleration, α, is given by a = r.

19 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Acceleration (cont.) A summary of linear and angular relationships.

20 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Angular Acceleration (cont.) A rotating object can make many revolutions in a given amount of time. The number of complete revolutions made by the object in 1 s is called angular frequency. Angular frequency, f, is given by the equation,

21 What is the angular velocity of the second hand of a clock?
SECTION8.1 Section Check What is the angular velocity of the second hand of a clock? A. B. C. D.

22 SECTION1.1 SECTION8.1 Section Check Answer Reason: Angular velocity is equal to the angular displacement divided by the time required to complete one rotation.

23 SECTION8.1 Section Check Answer Reason: In one minute, the second hand of a clock completes one rotation. Therefore,  = 2π rad. Therefore,

24 SECTION8.1 Section Check When a machine is switched on, the angular velocity of the motor increases by a total of 10 rad/s for the first 10 seconds before it starts rotating with full speed. What is the angular acceleration of the machine in the first 10 seconds? A.  rad/s2 B. 1 rad/s2 C. 100 rad/s2 D. 100 rad/s2

25 SECTION8.1 Section Check Answer Reason: Angular acceleration is equal to the change in angular velocity divided by the time required to make that change.

26 SECTION8.1 Section Check When a fan performing 10 revolutions per second is switched off, it comes to rest after 10 seconds. Calculate the magnitude of the average angular acceleration of the fan after it was switched off. A. 1 rad/s2 B. 2 rad/s2 C.  rad/s2 D. 10 rad/s2

27 SECTION8.1 Section Check Answer Reason: Angular displacement of any rotating object in one revolution is 2 rad. Since the fan is performing 10 revolutions per second, its angular velocity = 2 × 10 = 20 rad/s.

28 SECTION8.1 Section Check Answer Reason: Angular acceleration is equal to the change in angular velocity divided by the time required to make that change.

29

30 Rotational Dynamics MAIN IDEA Essential Questions
SECTION8.2 Rotational Dynamics MAIN IDEA Torques cause changes in angular velocity. Essential Questions What is torque? How is the moment of inertial related to rotational motion? How are torque, the moment of inertia, and Newton’s second law for rotational motion related?

31 Rotational Dynamics Review Vocabulary New Vocabulary
SECTION8.2 Rotational Dynamics Review Vocabulary magnitude a measure of size New Vocabulary Lever arm Torque Moment of inertia Newton’s second law for rotational motion

32 Force and Angular Velocity
SECTION8.2 Rotational Dynamics Force and Angular Velocity The change in angular velocity depends on the magnitude of the force, the distance from the axis to the point where the force is exerted, and the direction of the force.

33 Force and Angular Velocity (cont.)
SECTION8.2 Rotational Dynamics Force and Angular Velocity (cont.) To swing open a door, you exert a force. The doorknob is near the outer edge of the door. You exert the force on the doorknob at right angles to the door, away from the hinges.

34 Force and Angular Velocity (cont.)
SECTION8.2 Rotational Dynamics Force and Angular Velocity (cont.) To get the most effect from the least force, you exert the force as far from the axis of rotation (imaginary line through the hinges) as possible.

35 Force and Angular Velocity (cont.)
SECTION8.2 Rotational Dynamics Force and Angular Velocity (cont.) Thus, the magnitude of the force, the distance from the axis to the point where the force is exerted, and the direction of the force determine the change in angular velocity.

36 Force and Angular Velocity (cont.)
SECTION8.2 Rotational Dynamics Force and Angular Velocity (cont.) For a given applied force, the change in angular velocity depends on the lever arm, which is the perpendicular distance from the axis of rotation to the point where the force is exerted.

37 Force and Angular Velocity (cont.)
SECTION8.2 Rotational Dynamics Force and Angular Velocity (cont.) For the door, it is the distance from the hinges to the point where you exert the force. If the force is perpendicular to the radius of rotation then the lever arm is the distance from the axis, r.

38 Force and Angular Velocity (cont.)
SECTION8.2 Rotational Dynamics Force and Angular Velocity (cont.) If a force is not exerted perpendicular to the radius, however, the lever arm is reduced.

39 Force and Angular Velocity (cont.)
SECTION8.2 Rotational Dynamics Force and Angular Velocity (cont.) The lever arm, L, can be calculated by the equation, L = r sin θ, where θ is the angle between the force and the radius from the axis of rotation to the point where the force is applied.

40 Force and Angular Velocity (cont.)
SECTION8.2 Rotational Dynamics Force and Angular Velocity (cont.) Torque is a measure of how effectively a force causes rotation. The magnitude of torque is the product of the force and the lever arm. Because force is measured in newtons, and distance is measured in meters, torque is measured in newton- meters (N·m).

41 Force and Angular Velocity (cont.)
SECTION8.2 Rotational Dynamics Force and Angular Velocity (cont.) Torque is represented by the Greek letter tau, τ.

42 Rotational Dynamics Lever Arm
SECTION8.2 Rotational Dynamics Lever Arm A bolt on a car engine needs to be tightened with a torque of 35 N·m. You use a 25-cm long wrench and pull on the end of the wrench at an angle of 60.0° to the handle of the wrench. How long is the lever arm, and how much force do you have to exert?

43 Step 1: Analyze and Sketch the Problem
SECTION8.2 Rotational Dynamics Lever Arm (cont.) Step 1: Analyze and Sketch the Problem Sketch the situation. Find the lever arm by extending the force vector backward until a line that is perpendicular to it intersects the axis of rotation.

44 Rotational Dynamics Lever Arm (cont.)
SECTION8.2 Rotational Dynamics Lever Arm (cont.) Identify the known and unknown variables. Known: r = 0.25 m θ = 60.0º Unknown: L = ? F = ?

45 Step 2: Solve for the Unknown
SECTION8.2 Rotational Dynamics Lever Arm (cont.) Step 2: Solve for the Unknown

46 Rotational Dynamics Lever Arm (cont.)
SECTION8.2 Rotational Dynamics Lever Arm (cont.) Solve for the length of the lever arm. L = r sin 

47 Rotational Dynamics Lever Arm (cont.) Substitute r = 0.25 m, θ = 60.0º
SECTION8.2 Rotational Dynamics Lever Arm (cont.) Substitute r = 0.25 m, θ = 60.0º L = (0.25 m)(sin 60.0°) = 0.22 m

48 SECTION8.2 Rotational Dynamics Lever Arm (cont.) Solve for the force.

49 Rotational Dynamics Lever Arm (cont.)
SECTION8.2 Rotational Dynamics Lever Arm (cont.) Substitute τ = 35 N·m, r = 0.25 m, θ = 60.0º

50 Step 3: Evaluate the Answer
SECTION8.2 Rotational Dynamics Lever Arm (cont.) Step 3: Evaluate the Answer

51 Rotational Dynamics Lever Arm (cont.) Are the units correct?
SECTION8.2 Rotational Dynamics Lever Arm (cont.) Are the units correct? Force is measured in newtons. Does the sign make sense? Only the magnitude of the force needed to rotate the wrench clockwise is calculated.

52 Rotational Dynamics Lever Arm (cont.) The steps covered were:
SECTION8.2 Rotational Dynamics Lever Arm (cont.) The steps covered were: Step 1: Analyze and Sketch the Problem Sketch the situation. Find the lever arm by extending the force vector backward until a line that is perpendicular to it intersects the axis of rotation.

53 Rotational Dynamics Lever Arm (cont.) The steps covered were:
SECTION8.2 Rotational Dynamics Lever Arm (cont.) The steps covered were: Step 2: Solve for the Unknown Solve for the length of the lever arm. Solve for the force. Step 3: Evaluate the Answer

54 Click image to view movie.
SECTION8.2 Rotational Dynamics Finding Net Torque Click image to view movie.

55 Rotational Dynamics The Moment of Inertia
SECTION8.2 Rotational Dynamics The Moment of Inertia To observe how an extended object rotates when a torque is exerted on it, use a pencil with coins taped at the ends. Hold the pencil between your thumb and forefinger, and wiggle it back and forth. The forces that your thumb and forefinger exert, create torques that change the angular velocity of the pencil and coins.

56 The Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics The Moment of Inertia (cont.) Now move the coins so that they are only 1 or 2 cm apart. Wiggle the pencil as before. The torque that was required was much less this time. Thus, the amount of mass is not the only factor that determines how much torque is needed to change angular velocity; the location of that mass also is relevant.

57 The Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics The Moment of Inertia (cont.) The resistance to rotation is called the moment of inertia, which is represented by the symbol I and has units of mass times the square of the distance.

58 The Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics The Moment of Inertia (cont.) For a point object located at a distance, r, from the axis of rotation, the moment of inertia is given by the following equation: The moment of inertia of a point mass is equal to the mass of the object times the square of the object’s distance from the axis of rotation.

59 The Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics The Moment of Inertia (cont.) To observe how the moment of inertia depends on the location of the rotational axis, hold a book in the upright position and put your hands at the bottom of the book. Feel the torque needed to rock the book toward and away from you.

60 The Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics The Moment of Inertia (cont.) Repeat with your hands at the middle of the book. Less torque is needed as the average distance of the mass from the axis is less.

61 Rotational Dynamics Moment of Inertia
SECTION8.2 Rotational Dynamics Moment of Inertia A simplified model of a twirling baton is a thin rod with two round objects at each end. The length of the baton is 0.66 m, and the mass of each object is 0.30 kg. Find the moment of inertia of the baton as it is rotated about an axis at the midpoint between the round objects and perpendicular to the rod. What is the moment of inertia of the baton if the axis is moved to one end of the rod? Which is greater? The mass of the rod is negligible compared to the masses of the objects at the ends.

62 Step 1: Analyze and Sketch the Problem
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Step 1: Analyze and Sketch the Problem Sketch the situation. Show the baton with the two different axes of rotation and the distances from the axes of rotation to the masses.

63 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Identify the known and unknown variables. Known: m = 0.30 kg l = 0.66 m Unknown: I = ?

64 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Step 2: Solve for the Unknown

65 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Calculate the moment of inertia of each mass separately. Rotating about the center of the rod:

66 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Substitute l = 0.66 m

67 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Substitute m = 0.30 kg, r = 0.33 m

68 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Find the moment of inertia of the baton. I = 2Isingle mass Substitute Isingle mass = kg·m2 = 2(0.033 kg·m2) = kg·m2

69 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Rotating about one end of the rod: Isingle mass = mr2 Substitute m = 0.30 kg, r = 0.66 m = (0.30 kg)(0.66 m)2 = 0.13 kg·m2

70 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Find the moment of inertia of the baton. I = Isingle mass = 0.13 kg·m2 The moment of inertia is greater when the baton is swung around one end.

71 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Step 3: Evaluate the Answer

72 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) Are the units correct? Moment of inertia is measured in kg·m2. Is the magnitude realistic? Masses and distances are small, and so are the moments of inertia. Doubling the distance increases the moment of inertia by a factor of 4. Thus, doubling the distance overcomes having only one mass contributing.

73 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) The steps covered were: Step 1: Analyze and Sketch the Problem Sketch the situation. Show the baton with the two different axes of rotation and the distances from the axes of rotation to the masses.

74 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) The steps covered were: Step 2: Solve for the Unknown Calculate the moment of inertia of each mass separately. Find the moment of inertia of the baton. The moment of inertia is greater when the baton is swung around one end.

75 Moment of Inertia (cont.)
SECTION8.2 Rotational Dynamics Moment of Inertia (cont.) The steps covered were: Step 3: Evaluate the Answer

76 Newton’s Second Law for Rotational Motion
SECTION8.2 Rotational Dynamics Newton’s Second Law for Rotational Motion Newton’s second law for rotational motion states that angular acceleration is directly proportional to the net torque and inversely proportional to the moment of inertia. This law is expressed by the following equation. Newton’s Second Law for Rotational Motion

77 Newton’s Second Law for Rotational Motion (cont.)
SECTION8.2 Rotational Dynamics Newton’s Second Law for Rotational Motion (cont.) If the torque on an object and the angular velocity of that object are in the same direction, then the angular velocity of the object increases. If the torque and angular velocity are in different directions, then the angular velocity decreases.

78 SECTION8.2 Section Check Donna and Carol are sitting on a seesaw that is balanced. Now, if you disturb the arrangement, and the distance of the pivot from Donna’s side is made double the distance of the pivot from Carol’s side, what should be done to balance the seesaw again? A. Add some weight on Donna’s side, so the weight on Donna’s side becomes double the weight on Carol’s side. B. Add some weight on Carol’s side, so the weight on Carol’s side becomes double the weight on Donna’s side. C. Add some weight on Donna’s side, so the weight on Donna’s side becomes four times the weight on Carol’s side. D. Add some weight on Carol’s side, so the weight on Carol’s side becomes four times the weight on Donna’s side.

79 SECTION8.2 Section Check Answer Reason: Let FgD and FgC be the weights of Donna and Carol respectively, and rD and rC be their respective distances from the pivot. When there is no rotation, the sum of the torques is zero.

80 Section Check Answer Reason: FgDrD = FgCrC Now, if rD = 2rC
FgD2rC = FgCrC Hence, to balance the seesaw again, the weight on Carol’s side should be double the weight on Donna’s side.

81 What happens when a torque is exerted on an object?
SECTION8.2 Section Check What happens when a torque is exerted on an object? A. The object’s linear acceleration changes. B. The object’s angular acceleration changes. C. The object’s angular velocity changes. D. The object’s linear velocity changes.

82 SECTION8.2 Section Check Answer Reason: Torque is the measure of how effectively a force causes rotation. Hence, when torque is exerted on an object, its angular velocity changes.

83 SECTION8.2 Section Check What will be the change in the moment of inertia of a point mass of an object, if the object’s distance from the axis of rotation is doubled? A. The moment of inertia will be doubled. B. The moment of inertia will be halved. C. The moment of inertia will increase by four times. D. The moment of inertia will be quartered.

84 SECTION8.2 Section Check Answer Reason: The moment of inertia of a point mass is equal to the mass of the object times the square of the object’s distance from the axis of rotation, i.e. I = mr2. Hence, if r is doubled, I will increase by four times.

85

86 Equilibrium MAIN IDEA Essential Questions
SECTION8.3 Equilibrium MAIN IDEA An object in static equilibrium experiences a net force of zero and a net torque of zero. Essential Questions What is the center of mass? How does the location of the center of mass affect the stability of an object? What are the conditions for equilibrium? How do rotating frames of reference give rise to apparent forces?

87 Equilibrium Review Vocabulary New Vocabulary
SECTION8.3 Equilibrium Review Vocabulary torque a measure of how effectively a force causes rotation; the magnitude is equal to the force times the lever arm. New Vocabulary Center of mass Centrifugal “force” Coriolis “force”

88 Equilibrium The Center of Mass
SECTION8.3 Equilibrium The Center of Mass The center of mass of an object is the point on the object that moves in the same way that a point particle would move.

89 The Center of Mass (cont.)
SECTION8.3 Equilibrium The Center of Mass (cont.) The path of the center of mass of the object below is a straight line.

90 The Center of Mass (cont.)
SECTION8.3 Equilibrium The Center of Mass (cont.) To locate the center of mass of an object, suspend the object, like a tennis racket, from any point. When the racket stops swinging, the center of mass is along the vertical line drawn from the suspension point.

91 The Center of Mass (cont.)
SECTION8.3 Equilibrium The Center of Mass (cont.) Draw the line, and then suspend the object from another point on the racket. Again, the center of mass must be below this point. Draw a second vertical line. The center of mass is at the point where the two lines cross. A wrench, racket, and all other freely-rotating objects, rotate about an axis that goes through their center of mass.

92 The Center of Mass of a Human Body
SECTION8.3 Equilibrium The Center of Mass of a Human Body The center of mass of a person varies with posture.

93 The Center of Mass of a Human Body (cont.)
SECTION8.3 Equilibrium The Center of Mass of a Human Body (cont.) For a person standing with his or her arms hanging straight down, the center of mass is a few centimeters below the navel, midway between the front and back of the person’s body.

94 The Center of Mass of a Human Body (cont.)
SECTION8.3 Equilibrium The Center of Mass of a Human Body (cont.) When the arms are raised, as in ballet, the center of mass rises by 6 to10 cm.

95 The Center of Mass of a Human Body (cont.)
SECTION8.3 Equilibrium The Center of Mass of a Human Body (cont.) By raising her arms and legs while in the air, as shown below, a ballet dancer moves her center of mass closer to her head.

96 The Center of Mass of a Human Body (cont.)
SECTION8.3 Equilibrium The Center of Mass of a Human Body (cont.) The path of the center of mass is a parabola, so the dancer’s head stays at almost the same height for a surprisingly long time.

97 Click image to view movie.
SECTION8.3 Equilibrium Center of Mass and Stability Click image to view movie.

98 Center of Mass and Stability (cont.)
SECTION8.3 Equilibrium Center of Mass and Stability (cont.) An object is said to be stable if an external force is required to tip it. The object is stable as long as the direction of the torque due to its weight, τw tends to keep it upright. This occurs as long as the object’s center of mass lies above its base.

99 Center of Mass and Stability (cont.)
SECTION8.3 Equilibrium Center of Mass and Stability (cont.) To tip the object over, you must rotate its center of mass around the axis of rotation until it is no longer above the base of the object. To rotate the object, you must lift its center of mass. The broader the base, the more stable the object is.

100 Center of Mass and Stability (cont.)
SECTION8.3 Equilibrium Center of Mass and Stability (cont.) If the center of mass is outside the base of an object, it is unstable and will roll over without additional torque. If the center of mass is above the base of the object, it is stable. If the base of the object is very narrow and the center of mass is high, then the object is stable, but the slightest force will cause it to tip over.

101 Conditions for Equilibrium
SECTION8.3 Equilibrium Conditions for Equilibrium An object is said to be in static equilibrium if both its velocity and angular velocity are zero or constant. First, it must be in translational equilibrium; that is, the net force exerted on the object must be zero. Second, it must be in rotational equilibrium; that is, the net torque exerted on the object must be zero.

102 Rotating Frames of Reference
SECTION8.3 Equilibrium Rotating Frames of Reference Newton’s laws are valid only in inertial or nonaccelerated frames. Newton’s laws would not apply in rotating frames of reference, as they are accelerated frames. Motion in a rotating reference frame is important to us because Earth rotates.

103 Rotating Frames of Reference (cont.)
SECTION8.3 Equilibrium Rotating Frames of Reference (cont.) The effects of the rotation of Earth are too small to be noticed in the classroom or lab, but they are significant influences on the motion of the atmosphere and therefore on climate and weather.

104 Equilibrium Centrifugal “Force”
SECTION8.3 Equilibrium Centrifugal “Force” An observer on a rotating frame, sees an object attached to a spring on the platform. He thinks that some force toward the outside of the platform is pulling on the object. Centrifugal “force” is an apparent force that seems to be acting on an object when that object is kept on a rotating platform.

105 Centrifugal “Force” (cont.)
SECTION8.3 Equilibrium Centrifugal “Force” (cont.) As the platform rotates, an observer on the ground sees things differently. This observer sees the object moving in a circle. The object accelerates toward the center because of the force of the spring. The acceleration is centripetal acceleration and is given by

106 Centrifugal “Force” (cont.)
SECTION8.3 Equilibrium Centrifugal “Force” (cont.) It also can be written in terms of angular velocity, as: Centripetal acceleration is proportional to the distance from the axis of rotation and depends on the square of the angular velocity.

107 Equilibrium The Coriolis “Force”
SECTION8.3 Equilibrium The Coriolis “Force” Suppose a person standing at the center of a rotating disk throws a ball toward the edge of the disk.

108 The Coriolis “Force” (cont.)
SECTION8.3 Equilibrium The Coriolis “Force” (cont.) An observer standing outside the disk sees the ball travel in a straight line at a constant speed toward the edge of the disk.

109 The Coriolis “Force” (cont.)
SECTION8.3 Equilibrium The Coriolis “Force” (cont.) An observer stationed on the disk and rotating with it sees the ball follow a curved path at a constant speed. A force seems to be acting to deflect the ball.

110 The Coriolis “Force” (cont.)
SECTION8.3 Equilibrium The Coriolis “Force” (cont.) An apparent force that seems to cause deflection to an object in a horizontal motion when the observer is in a rotating frame of reference is known as the Coriolis “force.” It seems to exist because we observe a deflection in horizontal motion when we are in a rotating frame of reference.

111 The Coriolis “Force” (cont.)
SECTION8.3 Equilibrium The Coriolis “Force” (cont.) An observer on Earth, sees the Coriolis “force” cause a projectile fired due north to deflect to the right of the intended target. The direction of winds around high- and low-pressure areas results from the Coriolis “force.” Winds flow from areas of high to low pressure.

112 The Coriolis “Force” (cont.)
SECTION8.3 Equilibrium The Coriolis “Force” (cont.) Due to the Coriolis “force” in the northern hemisphere, winds from the south blow east of low-pressure areas.

113 The Coriolis “Force” (cont.)
SECTION8.3 Equilibrium The Coriolis “Force” (cont.) Winds from the north, however, end up west of low-pressure areas. Therefore, winds rotate counterclockwise around low-pressure areas in the northern hemisphere.

114 The Coriolis “Force” (cont.)
SECTION8.3 Equilibrium The Coriolis “Force” (cont.) In the southern hemisphere however, winds rotate clockwise around low-pressure areas.

115 SECTION8.3 Section Check Define center of mass. How can you locate the center of mass of an object?

116 SECTION8.3 Section Check Answer The center of mass of an object is the point on the object that moves in the same way as a point particle. To locate the center of mass of an object, suspend the object from any point. When the object stops swinging, the center of mass is along the vertical line drawn from the suspension point. Draw the line. Then, suspend the object from another point. Again, the center of mass must be below this point. Draw a second vertical line. The center of mass is at the point where the two lines cross.

117 SECTION8.3 Section Check Explain why larger vehicles are more likely to roll over than smaller ones. A. Larger vehicles have a higher center of mass than smaller ones. B. Larger vehicles have a lower center of mass than smaller ones. C. Larger vehicles have greater mass than smaller ones. D. Larger vehicles have huge tires which make the vehicle roll over easily.

118 SECTION8.3 Section Check Answer Reason: Larger vehicles have a higher center of mass than smaller ones. The higher the center of mass, the smaller the tilt needed to cause the vehicle’s center of mass to move outside its base and cause the vehicle to roll over.

119 When is an object said to be in static equilibrium?
SECTION8.3 Section Check When is an object said to be in static equilibrium? A. when the net force exerted on the object is zero B. when the net torque exerted on the object is zero C. when both the net force and the net torque exerted on the object are zero D. if both the velocity and the angular acceleration are zero or constant

120 SECTION8.3 Section Check Answer Reason: An object is said to be in static equilibrium if both its velocity and angular velocity are zero or constant. Thus, for an object to be in static equilibrium, it must meet two conditions. First, it must be in translational equilibrium, that is, the net force exerted on the object must be zero. Second, it must be in rotational equilibrium, that is, the net torque exerted on the object must be zero.  

121

122 Rotational Motion Physics Online Study Guide
CHAPTER8 Rotational Motion Resources Physics Online Study Guide Chapter Assessment Questions Standardized Test Practice

123 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Study Guide Angular displacement is the change in the angle (θ) as an object rotates. It is usually measured in degrees or radians. Average angular velocity is the object’s angular displacement divided by the time takes to make the angular displacement. Average angular velocity is represented by the Greek letter omega (ω) and is determined by the following equation.

124 Describing Rotational Motion
SECTION8.1 Describing Rotational Motion Study Guide Average angular acceleration is the change in angular velocity divided by the time required to make the change.

125 SECTION8.2 Rotational Dynamics Study Guide Torque describes the combination of a force and a lever arm that can cause an object to rotate. Torque is represented by the Greek letter tau (τ) and is determined by the following equation:

126 SECTION8.2 Rotational Dynamics Study Guide The moment of inertia is a point object’s resistance to changes in angular velocity. The moment of inertia is represented by the letter I and for a point mass, it is represented by the following equation: Newton’s second law for rotational motion states that angular acceleration is directly proportional to the net torque and inversely proportional to the moment of inertia.

127 SECTION8.3 Equilibrium Study Guide The center of mass of an object is the point on the object that moves in the same way that a point particle would move. An object is stable against rollover if its center of mass is above its base. An object in equilibrium has no net force exerted on it and there is no net torque acting on it.

128 SECTION8.3 Equilibrium Study Guide Centrifugal “force” and Coriolis “force” are two apparent, but nonexistent, forces that seem to exist when an object is analyzed from a rotating frame of reference.

129 CHAPTER8 Rotational Motion Chapter Assessment What is the angular displacement of Earth in two days? A. 2π rad times the radius of Earth B. 2π rad C. 4π rad D. 4π rad times the radius of Earth

130 CHAPTER8 Rotational Motion Chapter Assessment Reason: The angular displacement of Earth (or any rotating object) in one rotation is π rad. In two days, Earth rotates twice. Therefore, the angular displacement of Earth in two days is 2π rad + 2π rad = 4π rad.

131 CHAPTER8 Rotational Motion Chapter Assessment A truck’s tires have a diameter of 1 m and move with a velocity of 15 m/s. What is the angular velocity of the truck’s tires? C. A. B. D.

132 CHAPTER8 Rotational Motion Chapter Assessment Reason: If an object’s angular velocity is ω, then the linear velocity of a point at a distance r from the axis of rotation is given by v = rω. Therefore,

133 CHAPTER8 Rotational Motion Chapter Assessment Calculate the angular velocity of the wheels of a cart performing 10 revolutions per minute. A. C. B. D.

134 CHAPTER8 Rotational Motion Chapter Assessment Reason: Angular velocity is equal to the angular displacement divided by the time required to complete one rotation.

135 CHAPTER8 Rotational Motion Chapter Assessment Reason: In one revolution, the angular displacement of the cart is 2π rad. Therefore, in 10 revolutions, the angular velocity of the cart will be Δθ = 20π rad. Therefore,

136 CHAPTER8 Rotational Motion Chapter Assessment What is the angular frequency of a fan rotating with an angular velocity of 6π rad/s? A. 3 rev/s B. 6 rev/s C. 12 rev/s D. 3π rev/s

137 CHAPTER8 Rotational Motion Chapter Assessment Reason: Since

138 CHAPTER8 Rotational Motion Chapter Assessment A person standing on the edge of a rotating platform feels an outward pull. What is the force that causes the person to experience the outward pull? A. Centripetal force B. Centrifugal force C. Gravitational force D. Coriolis force

139 CHAPTER8 Rotational Motion Chapter Assessment Reason: A person standing on the edge of a rotating platform feels that some force toward the outside of the platform is pulling him. This apparent force is called centrifugal force. It is not a real force because there is no physical push on the person.

140 CHAPTER8 Rotational Motion Standardized Test Practice The illustration on the right shows two boxes on opposite ends of a board that is 3.0 m long. The board is supported in the middle by a fulcrum. The box on the left has a mass, m1, of 25 kg, and the box on the right has a mass, m2, of 15 kg. How far should the fulcrum be positioned from the left side of the board in order to balance the masses horizontally?

141 Rotational Motion A. 0.38 m B. 0.60 m C. 1.1 m D. 1.9 m
CHAPTER8 Rotational Motion Standardized Test Practice A m B m C. 1.1 m D. 1.9 m

142 Rotational Motion A. 30 N B. 52 N C. 60 N D. 69 N
CHAPTER8 Rotational Motion Standardized Test Practice A force of 60 N is exerted on one end of a 1.0-m long lever. The other end of the lever is attached to a rotating rod that is perpendicular to the lever. By pushing down on the end of the lever, you can rotate the rod. If the force on the lever is exerted at an angle of 30°, what torque is exerted on the lever? (sin 30° = 0.5; cos 30° = 0.87; tan 30° = 0.58) Edit this image. Use the correct multiply sign. A. 30 N B. 52 N C. 60 N D. 69 N

143 CHAPTER8 Rotational Motion Standardized Test Practice A child attempts to use a wrench to remove a nut on a bicycle. Removing the nut requires a torque of 10 N·m. The maximum force the child is capable of exerting at a 90° angle is 50 N. What is the length of the wrench the child must have to remove the nut? A. 0.1 m B m C. 0.2 m D m

144 CHAPTER8 Rotational Motion Standardized Test Practice A car moves a distance of 420 m. Each tire on the car has a diameter of 42 cm. Which of the following shows how many revolutions each tire makes as they move that distance? A. C. B. D.

145 CHAPTER8 Rotational Motion Standardized Test Practice A thin hoop with a mass of 5.0 kg rotates about a perpendicular axis through its center. A force of 25 N is exerted tangentially to the hoop. If the hoop’s radius is 2.0 m, what is its angular acceleration? A. 1.3 rad/s2 B. 2.5 rad/s2 C. 5.0 rad/s2 D. 6.3 rad/s2

146 Rotational Motion Test-Taking Tip When Eliminating, Cross it Out
CHAPTER8 Rotational Motion Standardized Test Practice Test-Taking Tip When Eliminating, Cross it Out Consider each answer choice individually and cross out the ones you have eliminated. If you cannot write in the test booklet, use the scratch paper to list and cross off the answer choices. You will save time and stop yourself from choosing an answer you have mentally eliminated.

147 Rotational Motion Lever Arm
CHAPTER8 Rotational Motion Chapter Resources Lever Arm A bolt on a car engine needs to be tightened with a torque of 35 N·m. You use a 25-cm long wrench and pull on the end of the wrench at an angle of 30.0° from the perpendicular. How long is the lever arm, and how much force do you have to exert?

148 Rotational Motion Moment of Inertia
CHAPTER8 Rotational Motion Chapter Resources Moment of Inertia A simplified model of a twirling baton is a thin rod with two round objects at each end. The length of the baton is 0.66 m, and the mass of each object is kg. Find the moment of inertia of the baton if it is rotated about the midpoint between the round objects. What is the moment of inertia of the baton when it is rotated around one end? Which is greater? Neglect the mass of the rod.

149 Radian Measure of Common Angles
CHAPTER8 Rotational Motion Chapter Resources Radian Measure of Common Angles

150 CHAPTER8 Rotational Motion Chapter Resources Lever Arm and Torque

151 Axis of Rotation of a Door
CHAPTER8 Rotational Motion Chapter Resources Axis of Rotation of a Door

152 Axis of Rotation of a Wrench
CHAPTER8 Rotational Motion Chapter Resources Axis of Rotation of a Wrench

153 Force, Lever Arm, and Torque
CHAPTER8 Rotational Motion Chapter Resources Force, Lever Arm, and Torque

154 CHAPTER8 Rotational Motion Chapter Resources Finding Net Torque

155 CHAPTER8 Rotational Motion Chapter Resources Balancing Torques

156 Balancing Torques on a Pulley
CHAPTER8 Rotational Motion Chapter Resources Balancing Torques on a Pulley

157 CHAPTER8 Rotational Motion Chapter Resources Torque in a Bicycle

158 Moments of Inertia for Various Objects
CHAPTER8 Rotational Motion Chapter Resources Moments of Inertia for Various Objects

159 Moments of Inertia in Batons
CHAPTER8 Rotational Motion Chapter Resources Moments of Inertia in Batons

160 Moments of Inertia in Similar Objects
CHAPTER8 Rotational Motion Chapter Resources Moments of Inertia in Similar Objects

161 Moments of Inertia in Similar and Equidistant Objects
CHAPTER8 Rotational Motion Chapter Resources Moments of Inertia in Similar and Equidistant Objects

162 Upward Motion of the Center of Mass
CHAPTER8 Rotational Motion Chapter Resources Upward Motion of the Center of Mass

163 Center of Mass and Stability
CHAPTER8 Rotational Motion Chapter Resources Center of Mass and Stability

164 Conditions for Equilibrium
CHAPTER8 Rotational Motion Chapter Resources Conditions for Equilibrium

165 CHAPTER8 Rotational Motion Chapter Resources Static Equilibrium

166 CHAPTER8 Rotational Motion Chapter Resources Coriolis Force

167 Coriolis Force due to Earth’s Rotation
CHAPTER8 Rotational Motion Chapter Resources Coriolis Force due to Earth’s Rotation

168 The Stability of Sport-Utility Vehicles
CHAPTER8 Rotational Motion Chapter Resources The Stability of Sport-Utility Vehicles

169 CHAPTER8 Rotational Motion Chapter Resources Angular Velocities

170 Rotational Motion in a Wheel
CHAPTER8 Rotational Motion Chapter Resources Rotational Motion in a Wheel

171 Rotational Motion in a Steering Wheel
CHAPTER8 Rotational Motion Chapter Resources Rotational Motion in a Steering Wheel

172 Velocity of an Automobile Wheel
CHAPTER8 Rotational Motion Chapter Resources Velocity of an Automobile Wheel

173 Torque on a Bolt, Produced by Force Applied on a Wrench
CHAPTER8 Rotational Motion Chapter Resources Torque on a Bolt, Produced by Force Applied on a Wrench

174 Moment of Inertia in the Toy
CHAPTER8 Rotational Motion Chapter Resources Moment of Inertia in the Toy

175 Force Exerted on a Wooden Board
CHAPTER8 Rotational Motion Chapter Resources Force Exerted on a Wooden Board

176 Force Needed to Lift a Sheet of Wood with Bags of Topsoil on It
CHAPTER8 Rotational Motion Chapter Resources Force Needed to Lift a Sheet of Wood with Bags of Topsoil on It

177 Angular Velocity of a Cylinder
CHAPTER8 Rotational Motion Chapter Resources Angular Velocity of a Cylinder

178 Applying Force and Torque on Lumber
CHAPTER8 Rotational Motion Chapter Resources Applying Force and Torque on Lumber

179 Tension in the Cable Supporting the Flag
CHAPTER8 Rotational Motion Chapter Resources Tension in the Cable Supporting the Flag

180 Tension in the Rope Supporting the Lamp
CHAPTER8 Rotational Motion Chapter Resources Tension in the Rope Supporting the Lamp

181 Positioning the Fulcrum
CHAPTER8 Rotational Motion Chapter Resources Positioning the Fulcrum

182 Effect of Torque on the Wrench
CHAPTER8 Rotational Motion Chapter Resources Effect of Torque on the Wrench

183 End of Custom Shows


Download ppt "Chapter 8: Rotational Motion"

Similar presentations


Ads by Google