Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter 19.

Similar presentations


Presentation on theme: "Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter 19."— Presentation transcript:

1 Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter 19

2 The Fundamentals of Bond Valuation The present-value model Where: P m =the current market price of the bond n = the number of years to maturity C = the annual coupon payment for bond i i = the prevailing yield to maturity for this bond issue P p =the par value of the bond

3 The Fundamentals of Bond Valuation If yield < coupon rate, bond will be priced at a premium to its par value If yield > coupon rate, bond will be priced at a discount to its par value Price-yield relationship is convex (not a straight line)

4 The Yield Model The expected yield on the bond may be computed from the market price Where: i = the discount rate that will discount the cash flows to equal the current market price of the bond

5 Computing Bond Yields Yield Measure Purpose Nominal Yield Measures the coupon rate Current yieldMeasures current income rate Promised yield to maturityMeasures expected rate of return for bond held to maturity Promised yield to callMeasures expected rate of return for bond held to first call date Realized (horizon) yield Measures expected rate of return for a bond likely to be sold prior to maturity. It considers specified reinvestment assumptions and an estimated sales price. It can also measure the actual rate of return on a bond during some past period of time.

6 Nominal Yield Measures the coupon rate that a bond investor receives as a percent of the bond’s par value

7 Current Yield Similar to dividend yield for stocks Important to income oriented investors CY = C/P m where: CY = the current yield on a bond C = the annual coupon payment of bond P m = the current market price of the bond

8 Promised Yield to Maturity Widely used bond yield figure Assumes –Investor holds bond to maturity –All the bond’s cash flow is reinvested at the computed yield to maturity Solve for i that will equate the current price to all cash flows from the bond to maturity, similar to IRR

9 Computing the Promised Yield to Maturity Two methods Approximate promised yield –Easy, less accurate Present-value model –More involved, more accurate

10 Approximate Promised Yield Coupon + Annual Straight-Line Amortization of Capital Gain or Loss Average Investment =

11 Present-Value Model

12 Promised Yield to Call Approximation May be less than yield to maturity Reflects return to investor if bond is called and cannot be held to maturity Where: AYC = approximate yield to call (YTC) P c = call price of the bond P m = market price of the bond C = annual coupon payment nc = the number of years to first call date

13 Promised Yield to Call Present-Value Method Where: P m = market price of the bond C = annual coupon payment nc = number of years to first call P c = call price of the bond

14 Realized Yield Approximation Where: ARY = approximate realized yield to call (YTC) P f = estimated future selling price of the bond C = annual coupon payment hp = the number of years in holding period of the bond

15 Realized Yield Present-Value Method

16 Calculating Future Bond Prices Where: P f = estimated future price of the bond C = annual coupon payment n = number of years to maturity hp = holding period of the bond in years i = expected semiannual rate at the end of the holding period

17 What Determines Interest Rates Inverse relationship with bond prices Forecasting interest rates Fundamental determinants of interest rates i = RFR + I + RP where: –RFR = real risk-free rate of interest – I = expected rate of inflation – RP = risk premium

18 What Determines Interest Rates Effect of economic factors –real growth rate –tightness or ease of capital market –expected inflation –or supply and demand of loanable funds Impact of bond characteristics –credit quality –term to maturity –indenture provisions –foreign bond risk including exchange rate risk and country risk

19 What Determines Interest Rates Term structure of interest rates Expectations hypothesis Liquidity preference hypothesis Segmented market hypothesis Trading implications of the term structure

20 Expectations Hypothesis Any long-term interest rate simply represents the geometric mean of current and future one-year interest rates expected to prevail over the maturity of the issue

21 Liquidity Preference Theory Long-term securities should provide higher returns than short-term obligations because investors are willing to sacrifice some yields to invest in short-maturity obligations to avoid the higher price volatility of long- maturity bonds

22 Segmented-Market Hypothesis Different institutional investors have different maturity needs that lead them to confine their security selections to specific maturity segments

23 Trading Implications of the Term Structure Information on maturities can help you formulate yield expectations by simply observing the shape of the yield curve

24 Yield Spreads Segments: government bonds, agency bonds, and corporate bonds Sectors: prime-grade municipal bonds versus good-grade municipal bonds, AA utilities versus BBB utilities

25 What Determines the Price Volatility for Bonds Bond price change is measured as the percentage change in the price of the bond Where: EPB = the ending price of the bond BPB = the beginning price of the bond

26 What Determines the Price Volatility for Bonds Four Factors 1. Par value 2. Coupon 3. Years to maturity 4. Prevailing market interest rate

27 What Determines the Price Volatility for Bonds Five observed behaviors 1. Bond prices move inversely to bond yields (interest rates) 2. For a given change in yields, longer maturity bonds post larger price changes, thus bond price volatility is directly related to maturity 3. Price volatility increases at a diminishing rate as term to maturity increases 4. Price movements resulting from equal absolute increases or decreases in yield are not symmetrical 5. Higher coupon issues show smaller percentage price fluctuation for a given change in yield, thus bond price volatility is inversely related to coupon

28 What Determines the Price Volatility for Bonds The maturity effect The coupon effect The yield level effect Some trading strategies

29 The Duration Measure Since price volatility of a bond varies inversely with its coupon and directly with its term to maturity, it is necessary to determine the best combination of these two variables to achieve your objective A composite measure considering both coupon and maturity would be beneficial

30 The Duration Measure Developed by Frederick R. Macaulay, 1938 Where: t = time period in which the coupon or principal payment occurs C t = interest or principal payment that occurs in period t i = yield to maturity on the bond

31 Characteristics of Duration Duration of a bond with coupons is always less than its term to maturity because duration gives weight to these interim payments –A zero-coupon bond’s duration equals its maturity There is an inverse relation between duration and coupon There is a positive relation between term to maturity and duration, but duration increases at a decreasing rate with maturity There is an inverse relation between YTM and duration Sinking funds and call provisions can have a dramatic effect on a bond’s duration

32 Modified Duration and Bond Price Volatility An adjusted measure of duration can be used to approximate the price volatility of a bond Where: m = number of payments a year YTM = nominal YTM

33 Duration and Bond Price Volatility Bond price movements will vary proportionally with modified duration for small changes in yields An estimate of the percentage change in bond prices equals the change in yield time modified duration Where:  P = change in price for the bond P = beginning price for the bond D mod = the modified duration of the bond  i = yield change in basis points divided by 100

34 Trading Strategies Using Duration Longest-duration security provides the maximum price variation If you expect a decline in interest rates, increase the average duration of your bond portfolio to experience maximum price volatility If you expect an increase in interest rates, reduce the average duration to minimize your price decline Note that the duration of your portfolio is the market-value- weighted average of the duration of the individual bonds in the portfolio

35 Bond Duration in Years for Bonds Yielding 6 Percent Under Different Terms

36 Bond Convexity Equation 19.6 is a linear approximation of bond price change for small changes in market yields

37 Bond Convexity Modified duration is a linear approximation of bond price change for small changes in market yields Price changes are not linear, but a curvilinear (convex) function

38 Price-Yield Relationship for Bonds The graph of prices relative to yields is not a straight line, but a curvilinear relationship This can be applied to a single bond, a portfolio of bonds, or any stream of future cash flows The convex price-yield relationship will differ among bonds or other cash flow streams depending on the coupon and maturity The convexity of the price-yield relationship declines slower as the yield increases Modified duration is the percentage change in price for a nominal change in yield

39 Limitations of Macaulay and Modified Duration Percentage change estimates using modified duration only are good for small-yield changes Difficult to determine the interest-rate sensitivity of a portfolio of bonds when there is a change in interest rates and the yield curve experiences a nonparallel shift Initial assumption that cash flows from the bond are not affected by yield changes

40 Effective Duration Measure of the interest rate sensitivity of an asset Use a pricing model to estimate the market prices surrounding a change in interest rates Effective Duration P- = the estimated price after a downward shift in interest rates P+ = the estimated price after a upward shift in interest rates P = the current price S = the assumed shift in the term structure

41 Effective Duration Effective duration greater than maturity Negative effective duration Empirical duration


Download ppt "Lecture Presentation Software to accompany Investment Analysis and Portfolio Management Seventh Edition by Frank K. Reilly & Keith C. Brown Chapter 19."

Similar presentations


Ads by Google