Presentation is loading. Please wait.

Presentation is loading. Please wait.

Simple Harmonic Oscillator - Motion

Similar presentations


Presentation on theme: "Simple Harmonic Oscillator - Motion"β€” Presentation transcript:

1 Simple Harmonic Oscillator - Motion
Equation of motion for SHO. Motion animation. Sinusoidal solution and harmonic frequency. Terminology and summary. Resonant frequency animation. Example problems. Relation between vmax , a ax , and A. Problem strategy. Simple pendulum.

2 Equation of Motion Given the following: What is equation of motion?
𝐹=βˆ’π‘˜π‘₯ 𝐹=π‘šπ‘Ž 𝑣= 𝑑π‘₯ 𝑑𝑑 π‘Ž= 𝑑𝑣 𝑑𝑑 What is equation of motion? π‘Ž=π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ ? 𝑣=π‘Žπ‘‘+ 𝑣 π‘œ ? π‘₯= 1 2 π‘Ž 𝑑 2 + 𝑣 π‘œ 𝑑+ π‘₯ π‘œ ? Of course not! Must be something oscillatory!!

3 Compare with Circular Motion
Compare Simple Harmonic and Circular Motion

4 Simple Harmonic vs. Circular Motion
Simple Harmonic vs. Circular Motion Animation See Appendix for running embedded files. To view web link put Powerpoint in reading view. To view embedded file put Powerpoint in normal view.

5 Sinusoidal Solution 1 Try this form: Must solve equation: Reason:
𝐹=π‘šπ‘Ž=βˆ’π‘˜π‘₯ Try this form: π‘₯=𝐴 π‘ π‘–π‘›πœ”π‘‘ Reason: Goes back and forth like animation sin its own 2nd derivative extra terms give flexibility Derivatives If π‘₯=𝐴 π‘ π‘–π‘›πœ”π‘‘ then 𝑣= 𝑑π‘₯ 𝑑𝑑 =π΄π‘π‘œπ‘ πœ”π‘‘ πœ” and π‘Ž= 𝑑𝑣 𝑑𝑑 =βˆ’π΄π‘ π‘–π‘›πœ”π‘‘ πœ” 2

6 Sinusoidal Solution 2 Plug in on both sides Must solve equation:
𝐹=π‘šπ‘Ž=βˆ’π‘˜π‘₯ Plug in on both sides βˆ’π‘š πœ” 2 𝐴 π‘ π‘–π‘›πœ”π‘‘=βˆ’π‘˜ 𝐴 π‘ π‘–π‘›πœ”π‘‘ Wonderful things happen The β€œsin” terms cancel. The minus signs cancel π‘š πœ” 2 =π‘˜ πœ”= π‘˜ π‘š Result Both sides track each other (sine or cosine) Natural resonant frequency πœ”= π‘˜ π‘š πœ”=2πœ‹π‘“

7 Resonant frequency Resonant frequency Animation
2π𝑓=πœ”= π‘˜ π‘š Animation

8 Harmonic Oscillator Terminology
Cycle – One complete oscillation Amplitude – Endpoint limits (x = -A to +A) Period – Time to complete one cycle Frequency – Number of cycles per second Frequency vs. Period f = 1/T T = 1/f πœ”=2πœ‹π‘“= 2πœ‹ 𝑇

9 SHO - summary to date Energy Motion Harmonic frequency
𝐸= 1 2 π‘˜ π‘₯ π‘š 𝑣 2 = 1 2 π‘˜ 𝐴 2 = 1 2 π‘˜ 𝑣 π‘šπ‘Žπ‘₯ 2 Motion π‘₯=𝐴𝑠𝑖𝑛 πœ”π‘‘ π‘œπ‘Ÿ π‘₯=π΄π‘π‘œπ‘  πœ”π‘‘ Harmonic frequency πœ”= π‘˜ π‘š Frequency and period πœ”=2πœ‹π‘“ πœ”= 2πœ‹ 𝑇

10 Example – Problem 7 πœ”=2πœ‹π‘“ = 2πœ‹4 𝑠 = 25.1 𝑠
m, k, Ο‰ – if you know 2/3 you can always find 3rd πœ”=2πœ‹π‘“ = 2πœ‹4 𝑠 = 𝑠 πœ”= π‘˜ π‘š π‘˜= πœ” 2 π‘š π‘˜= 𝑠 2 βˆ™ π‘˜π‘”= π‘˜π‘” 𝑠 2 = 𝑁 π‘š For m = kg πœ”= π‘˜ π‘š = 𝑁 π‘š π‘˜π‘” = 𝑠 𝑓=2.83 𝐻𝑧

11 Example – Problem 9 (I) πœ”=2πœ‹π‘“ = 2πœ‹3 𝑠 = 18.85 𝑠
m, k, Ο‰ – if you know 2/3 you can always find 3rd πœ”=2πœ‹π‘“ = 2πœ‹3 𝑠 = 𝑠 πœ”= π‘˜ π‘š π‘˜= πœ” 2 π‘š π‘˜= 𝑠 2 βˆ™0.6 π‘˜π‘”= 𝑁 π‘š Total Energy – Just find potential at full amplitude 𝐸 π‘‘π‘œπ‘‘ = 𝟏 𝟐 π’Œ 𝒙 𝟐 π‘š 𝑣 2 = 1 2 π‘˜ 𝐴 2 = 𝑁 π‘š π‘š 2 =1.8 J Velocity at equilibrium point 1.8 𝐽= 𝐸 π‘‘π‘œπ‘‘ = 1 2 π‘˜ π‘₯ 2 + 𝟏 𝟐 π’Ž 𝒗 𝟐 = 1 2 π‘š 𝑣 π‘šπ‘Žπ‘₯ 𝑣 π‘šπ‘Žπ‘₯ =2.45 π‘š 𝑠

12 Example – Problem 9 (II) Velocity at 0.1 m 𝐸 π‘‘π‘œπ‘‘ =1.8 𝐽
𝑃𝐸= 𝑁 π‘š π‘š 2 =1.067 𝐽 𝐾𝐸=1.8 π½βˆ’1.067 𝐽=0.734 𝐽 1 2 π‘š 𝑣 2 = 𝑣=1.56 π‘š/𝑠 Starting condition: at 𝑑=0 π‘₯=±𝐴 Must use cosine! π‘₯=π΄π‘π‘œπ‘ (πœ”π‘‘) π‘₯=0.13 π‘π‘œπ‘ (18.85 𝑑)

13 Example – Problem 13 (I) At any point x Amplitude Max velocity
𝐸 π‘‘π‘œπ‘‘ = 𝟏 𝟐 π’Œ 𝒙 𝟐 + 𝟏 𝟐 π’Ž 𝒗 𝟐 𝐸 π‘‘π‘œπ‘‘ = 𝑁 π‘š π‘š π‘˜π‘” π‘š 𝑠 2 𝐸 π‘‘π‘œπ‘‘ =0.056 J J =0.51 J Amplitude 0. 51 𝐽=𝐸 π‘‘π‘œπ‘‘ = 1 2 π‘˜ 𝐴 𝐴=.06 π‘š Max velocity 0. 51 𝐽=𝐸 π‘‘π‘œπ‘‘ = 1 2 π‘š 𝑣 π‘šπ‘Žπ‘₯ 𝑣 π‘šπ‘Žπ‘₯ =.58 π‘š 𝑠

14 Example – Problem 13 (I) Resonant frequency
πœ”= π‘˜ π‘š = 𝑁 π‘š 3 π‘˜π‘” = 𝑠 𝑓=1.54 𝐻𝑧 Equation of motion? Since it doesn’t start at either equilibrium or full amplitude, this requires phase angle We don’t do in this course – to complicated!

15 Example – Problem 19 (I) Oscillation is given in terms of period
πœ”= 2πœ‹ 𝑇 = 2πœ‹ 0.65 𝑠 = 𝑠 Starting condition: at 𝑑=0 π‘₯=Β±0.18 Must use cosine! π‘₯=π΄π‘π‘œπ‘ (πœ”π‘‘) π‘₯=0.18 π‘π‘œπ‘ (9.67 𝑑) Will reach equilibrium after ΒΌ cycle 𝑑= 𝑠= 𝑠

16 Example – Problem 19 (II) For maximum velocity
𝐸 π‘‘π‘œπ‘‘ = 1 2 π‘˜ π‘₯ π‘š 𝑣 2 = 1 2 π‘š 𝑣 π‘šπ‘Žπ‘₯ 2 = 1 2 π‘˜ 𝐴 2 1 2 π‘š 𝑣 π‘šπ‘Žπ‘₯ 2 = 1 2 π‘˜ 𝐴 2 𝑣 π‘šπ‘Žπ‘₯ = π‘˜ π‘š 𝐴=πœ”π΄= 𝑠 π‘š =1.74 π‘š 𝑠 For maximum velocity (at full amplitude) 𝐹=π‘šπ‘Ž=π‘˜π‘₯=π‘˜π΄ π‘Ž= π‘˜ π‘š 𝐴= πœ” 2 𝐴= 𝑠 π‘š =16.8 π‘š 𝑠 2

17 Solving SHO problems If stretched/compressed and release from rest, then you know amplitude and total energy. If velocity known at equilibrium midpoint, then you know vmax and total energy. If you know total energy, you can subtract potential or kinetic to get the other. If you know k and m, you know Ο‰. πœ”=2πœ‹π‘“ πœ”= 2πœ‹ 𝑇 General form x = A sinΟ‰t or x = A cosΟ‰t If oscillation start at equilibrium sine, full-amplitude cosine.

18 vmax , amax , and A Vmax vs. A amax vs. A
1 2 π‘š 𝑣 π‘šπ‘Žπ‘₯ 2 = 𝐸 π‘‘π‘œπ‘‘ = 1 2 π‘˜ 𝐴 2 𝑣 π‘šπ‘Žπ‘₯ = π‘˜ π‘š 𝐴=πœ”π΄ π‘₯=π΄π‘ π‘–π‘›πœ”π‘‘ β†’ 𝑣=πœ”π΄π‘π‘œπ‘ πœ”π‘‘ (calculus) amax vs. A π‘šπ‘Ž=βˆ’π‘˜π‘₯ π‘Ž π‘šπ‘Žπ‘₯ =βˆ’ π‘˜ π‘š π‘₯ π‘šπ‘Žπ‘₯ = βˆ’πœ” 2 𝐴 π‘₯=π΄π‘ π‘–π‘›πœ”π‘‘ β†’ π‘Ž= βˆ’πœ” 2 𝐴 π‘ π‘–π‘›πœ”π‘‘ (calculus)

19 Simple Pendulum From Physics 103 𝐹=βˆ’π‘šπ‘” π‘ π‘–π‘›πœƒ For Ο΄ small and in radians
πΉβ‰ˆβˆ’π‘šπ‘”πœƒ From geometry πΉβ‰ˆβˆ’π‘šπ‘” π‘₯ 𝑙 (π‘ π‘–π‘šπ‘–π‘™π‘Žπ‘Ÿ π‘‘π‘œ 𝐹=βˆ’π‘˜π‘₯) Resonant frequency is πœ”= 𝑔 𝑙 π‘ π‘–π‘šπ‘–π‘™π‘Žπ‘Ÿ π‘‘π‘œ πœ”= π‘˜ π‘š Acceleration is π‘Ž=βˆ’ 𝑔 𝑙 π‘₯ (π‘ π‘–π‘šπ‘–π‘™π‘Žπ‘Ÿ π‘‘π‘œ π‘Ž=βˆ’ π‘˜ π‘š π‘₯) Problem 32 (f=0.572 Hz, E = mgl(1-cosΞΈ)

20 Appendix - Animations I use animations in this course as I think they are helpful. For each animation you can either click on the web link or, if it’s unavailable, click on the embedded file directly. To use embedded files you have to have the Flash player standalone version loaded. To do this: Download file flashplayer_11_sa.exe and put it in known location on your computer. Hit Start menu, type β€œControl” in the search box, and this will open Control Panel. Select β€œPrograms”, β€œDefault Programs”, and select β€œAssociate a file type or protocol with a program”. Wait forever for the darn thing to load. In the list of file types, scroll down to β€œ.swf” Highlight β€œ.swf” and hit β€œChange Program”, then β€œBrowse” Navigate to where you put flashplayer_11_sa.exe, and hit OK Finished For non-ITS computers (store-bought configuration) just click on the file and it will prompt you. Mobile The will run on Android, but not the Chrome browser. I hear there’s a browser for iOS that will also work (Photon Flash Player)


Download ppt "Simple Harmonic Oscillator - Motion"

Similar presentations


Ads by Google